
REPORT DOCUMENTATION PAGE

1. Recipient's Reference 2. Originator's Reference

AGARD-AG-289

3. Further Reference

ISBN 92-835-1554-4

4. Security Classification
of Document

UNCLASSIFIED

5. Originator Advisory Group for Aerospace Research and Development
North Atlantic Treaty Organization
7 rue Ancelle, 92200 Neuihy sur Seine, France

6. Title
FAULT TOLERANT CONSIDERATIONS AND METHODS FOR
GUIDANCE AND CONTROL SYSTEMS

7. Presented at

8. Author(s)/Editor(s)

Editor: M. I'lngenieur General Marc J.Pelegrin

9. Date

July 1987

10. Author's/Editor's Address
Directeur du Centre d'Etudes et de Recherches
de Toulouse, ONERA, 2 Avenue Edouard Belin
BP 4025, F-31055 Toulouse, Cedex, France

11. Pages

136

12. Distribution Statement This document is distributed in accordance with AGARD
pohcies and regulations, which are outlined on the
Outside Back Covers of all AGARD publications.

13. Keywords/Descriptors

High integrity software Fault diagnostic
Fault tolerance, fault avoidance software Error recovery
Software dependability Dissimilar redundancy

14. Abstract

This AGARDograph, prepared and edited at the request of the Guidance and Control Panel of
AGARD, presents a description of recent trends and developments in analysis and design methods
for fault tolerant guidance and control systems architectures. The problems and issues associated
with these architectures, including both hardware and software aspects, are addressed exploring the
many developments underway in NATO in the following areas: Advances in fault tolerant
architectures; Advances in analytical fault-detection methods; Design considerations and methods;
Analysis and testing methods.

This AGARDograph has been prepared at the request of the Guidance and Control Panel of
AGARD.

RESEARCH REPORTS DlVmOlf
NAVAL POSTGRADUATE SCHOni
MONTEREY, CALIFORNIA S

AGARD-AG-289

r^i ..€
H' !

,' '%^v T^^^Ki
i««- ,s.\f^»^

^^nHH
ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT

»^' Sj-V'l^tl-i iflS

7 RUE AIMCELLE 92200 IMEUILLY SUR SEINE FRANCE

AGARDOGRAPH No.289

Fault Tolerant Considerations and
Methods for Guidance and Control

Systems

DISTRIBUTION AND AVAILABILITY
ON BACK COVER

AGARD-AG-289

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT pai^t^y
ft '

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

AGARDograph No.289

FAULT TOLERANT CONSIDERATIONS AND METHODS FOR GUIDANCE

AND CONTROL SYSTEMS

Edited by

Ingenieur General Marc IP^legpn
Directeur du Centre d'Etudes et de Recherches de Toulouse

ONERA
2 Avenue Edouard Belin

BP4025
F-31055 Toulouse Cedex

France

This AGARDograph has been prepared at the request of the Guidance and Control Panel of AGARD.

THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and
technology relating to aerospace for the following purposes:

— Exchanging of scientific and technical information;

— Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;

— Improving the co-operation among member nations in aerospace research and development;

— Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research
and development (with particular regard to its military application);

— Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in
connection with research and development problems in the aerospace field;

— Providing assistance to member nations for the purpose of increasing their scientific and technical potential;

— Recommending effective ways for the member nations to use their research and development capabilities for the
common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior
representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of
experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications
Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through
the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced
directly from material supplied by AGARD or the authors.

Published July 1987 ^.

Copyright © AGARD 1987
All Rights Reserved

ISBN 92-835-1554-4

Printed by Specialised Printing Services Limited
40 ChigwellLane, Loughton, Essex IGIO 3TZ

PREFACE

A previous AGARDograph (No 258, May 1980) dealt with a similar subject to the present one; its title was 'Guidance and
Control Software'. A quick comparison of titles of papers points out that five or six years later the major concerns of today's
engineers are the same. The tremendous possibilities of modern processors still hide the difficulties of providing adequate
software which would be demonstrated as fault-exempt for all possible configurations of input data.

Most of the papers deal with the reliability problem through various approaches. Two papers concern applications
directly but all papers give examples of application. It is worthwhile noting that hardware faults are no longer considered.
However, due to the multiplicity of sensors, the detection of sensors failure would simplify the recovery process if the failure is
immediately detected; if not, wrong data are sent to the processor(s) and the fault-detection process becomes much more
complicated and lasts longer.

External disturbances, such as lightning effect on the behaviour of a computer (it is assumed that the physical protection of
the hardware works normally) have and will have more importance. This is due to two different causes. The energy of signals
used in VLSI techniques is always decreasing; indeed the size of the chips is, also, decreasing and the induction due to the
discharge current (some hundreds of thousand amperes) is decreasing as well; but the connections between sensors and
computers or between computers remain about the same. Thus the ratio between induction and signal energies increases.

The second cause is the rapid development of composite materials which cancel the Faraday-shielding effect. Many
investigations are being carried out at the present time and the type of failure induced on the software execution in a computer is
studied carefully, both on a theoretical and practical basis.

Software reliability is a permanent problem. New methods to produce modular high-reliability software will soon give rise
to a new way of programming computers: they will allow the combining of these modules into a large software of about the same
degree of reliability. They will also allow re-use of parts of already existing and tested softwares.

This means that a new AGARDograph on the same subject is very likely in some five years time.

CONTENTS

Page

PREFACE iii

Reference

COMPUTING SYSTEMS DEPENDABILITY AND FAULT TOLERANCE: BASIC CONCEPTS
AND TERMINOLOGY

byJ.C.Laprie 1

THE APPLICATION OF EMULATION TECHNIQUES IN THE ANALYSIS OF HIGHLY
RELIABLE GUIDANCE AND CONTROL COMPUTER SYSTEMS

by G.E.Migneault 2

SOME APPROACHES TO THE DESIGN OF HIGH INTEGRITY SOFTWARE
by J.T.Shepherd, D.J.Martin and R.B.Smith 3

/ ROBUST CONTROL SYSTEM DESIGN '
by J.Ackermann 4*

RELIABILITY MODELING OF FAULT-TOLERANT COMPUTER BASED SYSTEMS
by S J.Bavuso 5

ISAURE: INTEGRATION OF SECURITY AND FAULT TOLERANCE IN THE REALITE
2000 SYSTEM

by J.Cazin and P.Michel 6

\J OPTIMAL DETECTION OF SENSOR FAILURES IN FLIGHT CONTROL SYSTEMS USING
DETERMINISTIC OBSERVERS

by N.Stuckenberg 7

ASSESSMENT OF SOFTWARE QUALITY FOR THE AIRBUS A 310 AUTOMATIC PILOT
by R.Troy and C.Baluteau 8

FLIGHT TEST OF A RESIDENT BACKUP SOFTWARE SYSTEM
by D.A.Deets, W.P.Lock and V.A.Megna 9

'(From LS.109: Fault Tolerance and Redundancy Management Techniques).

1-1

COMPUTING SYSTEMS DEPENDABILITY AND FAULT TOLERANCE:
BASIC CONCEPTS AND TERMINOLOGY

J.C. Laprie

LAAS-CNRS
7, Avenue du Colonel Roche

Toulouse
31077 Cedex

France

ABSTRACT

This paper provides a conceptual framework for expressing the
constituents of dependable computing:

• the impairments to dependability: faults, errors, and failures;
• the means for dependability: fault avoidance, fault tolerance,

fault removal, and fault forecasting;
• the measures of dependability: reliability and availability.

Emphasis is put on the dependability impairments and on fault
tolerance. Informal but precise definitions are given.

INTRODUCTION

This paper is aimed at giving informal but precise definitions caracterizing the various
attributes of computing systems dependability. It is a contribution to the work undertaken within
the "Reliable and Fault Tolerant Computing" scientific and technical community [Jes 77, Avi 78,
Ran 78, Car 79, Lap 82, And 81, Sie 82, Cri 85] in order to propose clear and widely acceptable
definitions for some basic concepts.

The paper results from an elaboration on [Lap 85, Avi 86]. It proceeds by refinements:
dependability is introduced as a global concept in a first section. Fault tolerance is then detailed in a
second section. A glossary is given in annex which recapitulates the terms defined throughout the
paper.

The guidelines which have governed this presentation can be summed up as follows:
• search for the minimum number of concepts enabling the dependability attributes

to be expressed;
• use of terms which are identical to —whenever possible— or as close as possible to

those generally used; as a rule, a term which has not been defined retains its
ordinary sense (as given by any dictionary);

• emphasis on integration (as opposed to specialization [Gol 82]).

In each section, concise definitions are given first, then they are heavily commented in order
to (attempt to) show their wide applicability. Boldface characters are used when a term is defined,
italic characters being an invitation to focus the reader's attention.

1-2 .

THE DEPENDABILITY CONCEPT

BASIC DEFINITIONS AND ASSOCIATED TERMINOLOGY

Dependability is that property of computing systems which allows reliance to be justifiably
placed on the service it delivers.

The service delivered by a system is its behavior as it is perceived by its user(s); a user is
another system (human or physical) which interacts with the former.

A system failure occurs when the delivered service deviates from the specified service,
where the service specification is an agreed description of the expected service. The failure
occurred because the system was erroneous: an error is that part of the system state —with respect
to the computation process— which is liable to lead to failure. The adjudged or hypothesized cause of
an error is a fault.

An error is thus the manifestation of a fault in the system, and a failure is the effect of an error
on the service.

Achieving a dependable computing system calls for the combined utilization of a set of
methods which can be classed into:

• fault avoidance: how to prevent, by construction, fault introduction;
• fault tolerance: how to provide, by redundancy, service complying with the

specification in spite of faults;
• fault removal: how to minimize, by verification, the presence of faults;
• fault forecasting: how to estimate, by evaluation, the presence, the creation, and

the consequences of faults.
Fault avoidance and fault tolerance may be seen as constituting dependability procurement:

how to provide the system with the ability to deliver the specified service; fault removal and fault
forecasting may be seen as constituting dependability validation: how to reach confidence in the
system's ability to deliver the specified service.

The life of a system is perceived by Us users as an alternation between two states of the
delivered service with respect to the specified service:

• proper service, where the service is delivered as specified;
• improper service, where the delivered service differs from the specified service.

The events which constitute the transitions between these two states are the failure and the
restoration of service. Quantifying the alternation between proper and improper service leads to
the two main measures of dependability:

• reliability: a measure of the continuous delivery of proper service —or,
equivalently, of the time to failure— from a reference initial instant;

• availability: a measure of the delivery of proper service with respect to the
alternation of proper and improper service.

COMMENTS

1- On the Introduction of Dependability as a Global Concept

Why should another term be added to an already long list ? Reliability, availability, safety,
etc. The reasons are basically two-fold:

• to remedy the existing confusion between reliability in its general meaning (reliable
system) and reliability as a mathematical quantity (system reliability)';

• to show that reliability, maintainability, availability, safety, etc. are quantitative
measures corresponding to distinct perceptions of the same attribute of a system: its
dependability.

In regard to the term "dependability", it is noteworthy that from an etymological point of
view, the term "reliability" would be more appropriate: ability to rely upon. Although dependability
is synonymous to reliability, it brings in the notion of dependence at a second level. This may be felt

1 Most books having the word "reliability" in their title actually deal with how to evaluate, measure, predict the

reliability of systems, not really with how to build reliable systems.

1-3

as a negative connotation at first sight, when compared to the positive notion of trust as expressed
by reliability, but it does highlight our society's ever increasing dependence upon sophisticated
systems in general and especially upon computing systems. Moreover, "to rely" comes from the
French "relier", itself from the Latin "religare", to bind back: re-, back and ligare, to fasten, to tie. The
French word for reliability, "fiabilite", traces back to the 12th century, to the word "fiablete" whose
meaning was "character of being trustworthy"; the Latin origin is "fidare", a popular verb meaning
"to trust". Simultaneous consideration of the English and French origins for reliability thus leads to
the (unsurprising) association of two key concepts: ties for trust.

Finally, it is interesting to note that viewing dependability as a more general concept that
reliability, availability, etc. and embodying the latter terms, has already been attempted in the past
(see e.g. [Hos 60]), although with less generality than here, since the goal was to define a measure.

2- On the Notions of Service and its Specification, and of System

From its very definition, the service delivered by a system is clearly an abstraction of its
behavior. It is noteworthy that this abstraction is highly dependent on the application that the
computer system supports. An example of this dependence is the important role played in this
abstraction by the time: the time granularities of the system and of its user(s) are generally
different.

Concerning specification, what is essential within the present context is that it is a description
of the service which is agreed upon by two persons or corporate bodies —in fact, legal personnae: the
system supplier (in a broad sense of the term: designer, builder, vendor, etc.) and its human user(s)2.
The agreement is necessary in order that the specification can (at least) serve as a basis for
adjudicating unambiguously whether the delivered service is acceptable or not. What precedes does
not mean that a specification will not change once established. This would be simple ignorance of the
facts of life, which imply change. The changes may be motivated by modifying the service
expectation: modification of functionality, or correction of some undesired features such as
deficiencies in the agreed specification. Once more, what is important is that the specification is
(again) agreed upon. It must be stressed that such matters as environment conditions, exposure time
duration, observability, readiness, etc., can —and should— be captured by an appropriately stated
specification.

Up to now, a system has been considered as a whole, emphasizing its externally perceived
behavior; a definition complying with this "black box" view is: an entity having interacted,
interacting, or likely to interact with other entities, i.e., with other systems^. The behavior is then
simply what the system does [Zie 76]. What enables it to do what it does is the structure of the
system or its organization. Adopting the spirit of [And 81], a system, from a structural ("glassbox")
viewpoint, is a set of components bound together in order to interact; a component is another
system, etc. The recursion stops when a system is considered as being atomic: any further internal
structure cannot be discerned, or is not of interest and can be ignored. The term "component" has to
be understood in a broad sense: layers^ of a system as well as intralayer components; in addition, a
component being itself a system, it embodies the interrelation(s) of the components of which it is
composed.

Based on the preceding view of system structure, the notions of service and of its specification
apply equally naturally to the components^.

^ The agreement may be implicit, e.g. when using off-the-shelf systems.

^ Giving recursive definitions is not for recursion's sake. The aim is to emphasize relativity with respect to the
adoted viewpoint. So is it for the notion of system: a given system's boundaries may vary depending whether it is
viewed by its designer(s), by its user(s), by its maintenance crew, etc.

'^ In the sense of protocols, i.e. a given layer using the services provided by lower layer(s), including hardware,
and delivering services to the upper layer(s).

5 This is especially interesting in the design process, when off-the-shelf components, either hardware or
software —"reusable" software— are used: what is of actual interest to the designer is the service they are able to
provide, not their detailed (internal) behavior.

1-4

3- On the Notions of Fault, Error, and Failure

The sources of faults are extremely diverse. The three main viewpoints according to which
they can be classified are:

1) the phenomenological causes, which lead to distinguish [Avi 78]:
• physical faults, which are due to adverse physical phenomena,
• human-made faults, which result from human imperfections;

2) the system boundaries, which lead to distinguish internal faults and external
faults, the latter resulting from the system's interference with its physical or
human environment.

3) the temporal persistence, which leads to distinguish:
• permanent faults, which are irreversible structural states,
• temporary faults, who do not act longer than a certain maximum time.

The first two viewpoints lead to four classes of faults:
• physical internal faults, due to physico-chemical disorders (threshold changes, short

circuits, open circuits, etc.);
• physical external faults, due to environmental perturbations (electromagnetic

perturbations, radiations, temperature, vibrations, etc.);
• human-made internal faults, or design faults, resulting from imperfections

committed either a) during the initial design of the system (broadly speaking, from
requirement specification to implementation) or during subsequent modifications, or
b) during the establishment of the procedures for operating or maintaining the
system;

• human-made external faults, resulting from the violation of operating or
maintenance procedures.

It could be argued that introducing the phenomenological causes in the classification criteria of
faults may lead recursively "a long way back", e.g. why are programmers doing mistakes? why are
integrated circuits failing? The very notion of fault is arbitrary, and is in fact a facility provided for
stopping the recursion. Hence the definition given: adjuged or hypothesized cause of an error. This
cause may vary depending upon the adopted viewpoint: fault tolerance mechanisms, maintenance
engineers, repair shop, designer, semiconductor physicist, etc. In our view, recursion stops at the
cause which is intended to be avoided or tolerated. This view provides consistency to the distinction
between human-made and physical faults: a computing system is a human artifact and as such any
fault in it or affecting it is ultimately human-made since it represents human inability to master all
the phenomena which govern the behavior of a system. In an absolute sense, a distinction between
physical faults and human-made faults (especially design faults) may be considered unnecessary;
however, this distinction is of importance when considering the (current) methods and techniques
for procuring and validating dependability. If the recursion mentioned above is not stopped, then a
fault is nothing other than the consequence of a failure of a system that has delivered (including the
designers) or is now delivering a service to the considered system.

Examples of the preceding discussion follow:
• a design fault is consecutive to a designer failure;
• a physical internal fault is due to a hardware component failure, which is itself the

consequence of (an) error(s) at the electrical or electronical level, in turn originating
from the hardware production, or from —the limits of— our knowledge of the
semiconductor physics: the "physics reliability" community rarely characterizes
failures as "sudden and nonpredictable";

• a physical or human-made external fault is in fact a design fault: the inability to
foresee all the situations the system will be faced with during its operational life, or
the refusal of considering some of them (e.g. for economic reasons); for instance in
the case of a transient fault under the form of an electromagnetic perturbation: is it
an external fault or a design fault, i.e. the lack of adequate shielding?

The temporal persistence viewpoint deserves the following comments:
1) Internal faults can be permanent or temporary, whereas external faults are

generally temporary.
2) Permanent internal faults are generally due to failures, either of a hardware

component or of a designer.
3) Temporary physical external faults are often termed as transient faults.

1-5

4) Temporary internal faults are often termed as intermittent faults; those faults
result from the presence of rarely occurring combinations of conditions; examples
are a) "pattern sensitive" faults in semiconductor memories, change in parameters
of a hardware component (effect of temperature variation, delay in timing due to
parasitic capacitance, etc.), or b) situations —affecting either hardware or software—•
occurring when system load comes above a certain level, such as marginal timing
and synchronisation. In fact, the term "fault" is in such cases is actually an
abstraction for fault conditions.

The table of Figure 1 summarizes the classes of faults with respect to the three viewpoints
considered.

Phenomenological
Cause

System
Boundary

Temporal
Persistence

Physical Human-made Internal External Permanent Temporary

• • •
1 1 1

• • •

• * •

• • •

• • •

• • •

Figure 1 - Fault classes

Concerning human-made faults, an additional viewpoint for their classification is to consider
whether they are accidental or intentional. Up to now, only accidental faults have been —implicitly—
dealt with. Intentional faults, either design faults ("Trojan horses") or interaction faults (intrusions)
lead directly to security. However, the corresponding methods and techniques will not be addressed
in this paper.

An error was defined as being liable to lead to failure. Whether or not an error will actually
lead to a failure depends on two major factors:

1) The system composition, and especially the nature of the existing redundancy:
• intentional redundancy (introduced to provide fault tolerance) which is

explicitly intended to prevent an error from leading to failure,
• unintentional redundancy (it is practically difficult if not impossible to

build a system without any form of redundancy^) which may have the
same —unexpected— result as intentional redundancy.

2) The definition of a failure from the user's viewpoint: what is a failure for a given
user may be a bearable nuisance for another one. Examples are a) accounting for
the user's time granularity: an error which "passes through" the system-user(s)
interface may or may not be viewed as a failure depending on the user's time
granularity, b) the notion of "acceptable error rate" —implicitly before considering
that a failure has occurred— in data transmission.

Based on the given definition of a system from the structural viewpoint, the discussion of
whether "failure" applies to a system or a component is simply irrelevant, since a component is itself
a system. When atomic systems are dealt with, the notion of an "elementary" failure comes
naturally.

6 A classical problem in hardware testing is the removal of such "false redundancies", whose effect may be to
mask errors, and as such to make more complicate the test patterns generation.more complicate.

1-6

The structural view of a system enables fault pathology to be made more precise. The creation
and manifestation mechanisms of faults, errors, and failures may be summarized as follows:

1) A fault may be dormant or active; a fault is active when it produces an error. A
fault may cycle between its dormant and active states. Physical faults can directly
affect the physical components only, whereas human-made faults may affect any
component.

2) An error may be latent or detected, either by a detection algorithm or mechanism
within the component. An error may, and in general does, propagate^ from one
component to another; by propagating, an error creates other —new— error(s). An
error may thus originate from:

• activation of a dormant fault within the same component,
• propagation of an error within the same component or from another

component.
3) A component failure occurs when an error affects the service delivered by the

component as a response to request(s) from another component. A component
failure may result in a fault for the component(s) to whom it delivers service.

These mechanisms enables the "fundamental chain" to be completed:

• • • —> failure —> fault —> error —> failure —> ...

A given fault in a given component may result from different possible sources. For instance, a
f^iult in a physical component —e.g. stuck at ground voltage— may result from:

• a physical failure (e.g. caused by a threshold change);
• an error caused by a design fault —e.g. faulty microinstruction— propagating "top-

down" through the layers and causing a short between two circuit outputs for a
duration long enough to provoke a short-circuit having the same consequence as the
threshold change.

In conclusion, we observe that faults, errors, and failures are all undesired circumstances.
Assignment of the terms fault, error, failure simply takes into account current usage: a) fault
avoidance, tolerance, and diagnosis, b) error detection and correction, c) failure rate.

It has to be noted that the labels "fault" and "error" are sometimes interchanged, as in [lEE 82].
The assigment adopted here acknowledges the long-time usage of the coding theory.

4- On Fault Avoidance, Tolerance, Removal, and Forecasting

All the "how to's" which appear in the basic definitions are in fact goals which cannot be fully
reached, as all the corresponding activities are human activities, and thus imperfect. These
imperfections bring in dependencies which explain why it is only the combined utilization of the
above methods —preferably at each step of the design and implementation process— which can lead
to a dependable computing system. These dependencies can be sketched as follows: in spite of fault
avoidance by means of design methodologies and construction rules (imperfect in order to be
workable), faults occur; hence the need for fault removal; fault removal is itself imperfect, as are the
off-the-shelf components of the system, hence the need for fault forecasting; our increasing
dependence on computing systems brings in fault tolerance, which in turns necessitates further
construction rules, and thus fault removal, fault forecasting, etc.

It must be noted that the process is even more recursive than it appears from the above: current
computer systems are so complex that their design and implementation need computerized tools in
order to be cost-effective (in a broad sense, including the capability of succeeding within an
acceptable time scale). These tools have themselves to be dependable, and so on.

The preceding reasoning explains why in the given definitions fault removal and fault
forecasting are gathered into validation. Validation is often limited to what has been termed as
verification; in that case these two terms are often associated, e.g. "V and V" [Boe 79], the distinction
being related to the difference between "building the system right" (related to verification) and
"building the right system" (related to validation). What is proposed is simply an extension of this
concept: the answer to the question "am I building the right system?" being complemented by "for

'' The non reflexive form of "propagate" is intentionally used: an error does not propagate itself, it just propagates.
Altliougli "propagate" was retained due to its wide use, beter words would probably be "spread", or "breed".

1-7

how long will it be right?"^. In addition, fault removal is usually closely associated with fault
avoidance, both constituting fault prevention. Besides highlighting the need for validating the
procedures and mechanisms of fault tolerance, considering fault removal and fault forecasting as two
constituents of the same activity —validation— is of great interest in that it enables a better
understanding of the notion of coverage, and thus of an important problem introduced by the
above recursion: the validation of the validation, or how to reach confidence in the methods and
tools used in building confidence in the system. Coverage refers here to a measure of the
representativity of the situations to which the system is submitted during its validation with respect
to the actual situations it will be confronted with during its operational life.

5- On the Measures of Dependability

Only two basic measures (or "metrics") have been considered, reliability and availability.
Usually, a third one, maintainability is also considered: a measure of the continuous delivery of
improper service, or equivalently, of the time to restoration. This measure is no less important than
those previously defined; it was not introduced in the basic definitions because it may, at least
conceptually, be deduced from the other two. It is noteworthy that availability encapsulates both the
frequency of failure and the duration of proper service at each alternation of proper-improper
service.

The term "probability" has intentionally been not employed in the given definitions, so as to
reinforce the significance of the defined measures. As the considered events are non-deterministic,
random variables are associated with them, and the measures which are dealt with are probabilities.

A system may not, and generally does not, always fail in the same way. This immediately
brings in the notion of the consequences of a failure upon the other systems with which the
considered system is interacting, i.e. its environment. Several failure modes can generally be
distinguished (in the specification), ordered according to the increasing severity of their
consequences, i.e. their criticality. A special case of great interest is that of systems which exhibit
two failure modes (or whose failure modes can be grouped into two classes) whose criticalities differ
considerably:

• benign failures, where the consequences are of the same order of magnitude
(generally in terms of cost) as those of the service delivered in the absence of
failure;

• malign or catastrophic failures, where the consequences are non
commensurable with those of the service delivered in the absence of failure.

Through grouping the states of proper service and improper service subsequent to benign failures
into a safe state (in the sense of being free from damage, not from danger), the generalization of
reliability leads to an additional measure: a measure of continuous safeness, or equivalently, of the
time to catastrophic failure, i.e., safety^. A direct generalization of the availability, i.e. a measure of
safeness with respect to the alternation of safeness and improper service after catastrophic failure,
would not provide a significant measure. When a catastrophic failure has occurred, the consequences
are generally so important that system restoration is not of prime importance for —at least— the two
following reasons:

• it comes second to repairing (in the broad sense of the term, including legal aspects)
the consequences of the catastrophe;

• the lengthy period prior to being allowed to operate the system again (investigation
commissions) would lead to meaningless numerical values.

A "hybrid" reliability-availability-type measure has thus to be defined: a measure of proper
service delivery with respect to the alternation of proper service and improper service after benign
failure. This measure is of interest in that it provides indeed a quantification of the system
availability before occurrence of a catastrophic failure, and as such enables quantification of the so-
called "reliability- (or availability-) safety tradeoff".

^ Validation stems from "validity", which encapsulates two notions:
• validity at a given moment, which relates to fault removal;
• validity for a given duration, which relates to fault forecasting.

^ It is not the author's intention to contribute to the controversy whether safety includes reliability or vice-
versa: the proposed answer is that both are attributes of dependability.

SUMMARY

What has been presented in this section actually constitutes an attempt to build a taxonomy
of dependable computing. The concepts introduced may be gathered into three main classes of
attributes:

• the impairments to dependability, which are undesired —but not unexpected—
circumstances causing or resulting from un-dependability (whose definition is very
simply derived from the definition of dependability: reliance cannot, or will not, be
any longer justifiably placed on the service); the impairments are the faults, errors,
and failures.

• the means/or dependability, which are the methods, tools, and solutions enabling
a) the system to be provided with the ability to deliver a service on which reliance
can be placed (dependability procurement by fault avoidance and fault tolerance),
and b) the user to reach confidence in this ability (dependability validation by fault
removal and fault forecasting);

• the measures of dependability, which enable the service quality resulting from the
impairments and the means opposing to them to be appraised; the two main
measures are reliability and availability.

The dependability constituents can be represented under the form of a tree as in figure 2.

IH/ID A IDHfirhlTC

r- FAULTS

- ERRORS

- FAILURES

pFAULT AVOIDANCE
pPROCUREMENT-

•-FAULT TOLERANCE

rFAULT REMOVAL
LVALIDATION —

■-FAULT FORECASTING

pRELIABILITY

-AVAILABILITY

nporunARii ITV

1 mLAoUllLO

Figure 2 - The constituents of dependability

FAULT TOLERANCE

BASIC DEFINITIONS

Fault tolerance is carried out by error processing and by fault treatment [And 81]. Error
processing is aimed at removing errors from the computational state, if possible before occurrence
of failure; fault treatment is aimed at preventing (a) fault(s) to be activated —again.

Error processing may take on two forms:
• error recovery, where an error-free state is substituted for the erroneous state;

this substitution may take on two two forms [And 81]:
- backward error recovery, where the erroneous state transformation

consists of bringing the system back to an already occupied state prior to
error occurrence; it involves the establishment of recovery points, which
are points in time during the execution of a process for which the then
current state may subsequently need to be restored;

1-9

- forward error recovery, where the erroneous state transformation
consists of finding a new state, which was never occupied before, or which
was not occupied since the same error occurred;

• error compensation, where the erroneous state contains enough redundancy to
enable the delivery of an error-free service from the erroneous (internal) state.

When error recovery is employed, the erroneous state needs to be (urgently) identified as being
erroneous prior to being transformed, which is the purpose of error detection. On the other hand,
compensation may be applied systematically, even in the absence of error(s), then providing fault
masking.

The first step in fault treatment is fault diagnostics, which consists in determining the
cause(s) of error(s), in terms of both location and nature. Then come the actions aimed at fulfilling
the main purpose of fault treatment: preventing the fault(s) from being activated again, thus aimed
at making it(them) passive, i.e. fault passivation. This is carried out in removing the component(s)
identified as being faulty from further execution processes. If the system is no longer capable of
delivering the same service as before, then a reconfiguration may take place.

Fault treatment is generally complemented by maintenance (except of course for non-
maintained systems), aimed at removing faults. Maintenance actions can be put into two classes:

• corrective maintenance, aimed at removing those faults which have produced
detected errors,

• preventive maintenance, aimed at removing faults before they are activated.

COMMENTS

1- On the Tolerated fault classes

The preceding definitions apply to physical faults as well as to design faults: the class(es) of
faults which can actually be tolerated depend(s) on the fault hypothesis which is being considered in
the design process, and thus depend on the independency of redundancies with respect to the
process of fault creation and activation. An example is provided when considering tolerance to
physical faults and tolerance to design faults. A (widely used) method to attain fault tolerance is to
perform multiple computations through multiple channels. When tolerance to physical faults is
foreseen, the channels may be identical, based on the assumption that hardware components fail
independently; such an approach is not suitable for the tolerance to design faults where the channels
have to provide identical services through independent designs and implementations [Elm 72,
Ran 75, Avi 78], i.e. through design diversity [Avi 84].

Fault tolerance is (also) a recursive concept: it is essential that the mechanisms aimed at
implementing fault tolerance be protected against the faults which can affect them. Examples are
voter replication, self-checking checkers [Car 68], "stable" memory for recovery programs and data
[Lam 81].

2- On Error Processing and Fault Treatment

The goal of error processing is the preservation of data integrity, which in turns requires that
the data contained in the components involved in this preservation to be consistent [Wen 78, Gra 78,
Pea 80].

The knowledge of some system properties may limit the necessary amount of redundancy.
Examples of these properties are regularities of structural nature: error detecting and correcting
codes, robust data structures [Tay 80], multiprocessors and local area networks [Hay 76]. The fault
that are tolerated are then dependent upon the properties which are accounted for, since they
directly intervene in the fault hypotheses taken into account in the design process.

The association into a component of its functional processing capability together with error
detection mechanisms leads to the notion of self-checking component, either hardware or
software; one of the important benefits of the self-checking component approach is the ability to a
clear definition of the error confinement areas. The implementation of self-checking components
through the multiple channel approach leads to the association of two components delivering the

1-10

same service and of a comparison mechanism; this —widely used— form is often termed as duplexing
and comparing^C.

Tolerance to temporary faults does not necessitate fault treatment, since error recovery
should in this case directly remove the effects of the faults, which has itself vanished. However,
distinguishing a permanent fault from a temporary fault is a complex task, since different fault
classes may lead to very similar errors, and it can be said that declaring whether the cause of an
error is a permanent or temporary fault is in fact subjective to some extent, including the fact that a
fault may be declared as temporary if the fault diagnostics is unsuccessful.

In addition,
a) fault passivation is in fact a voluntary system change, which, as such, will lead to

lowering the system available redundancy;
b) some faults, even permanent, have a likelihood of recurring which is low enough, or

their consequences are bearable enough, so that fault treatment is not undertaken.
As a consequence, fault treatment generally does not immediately follow error processing; the

delay may be determined by either logging a certain number of error occurences, or allowing a
certain lapse of time during which the error(s) should not occur again. Another consequence, from
the terminology viewpoint, is that temporary faults are often termed as soft faults, with respect to
the fact that fault treatment is not necessary in their case; permanent faults are conversely termed
as hard, or solid, faults.

Backward and forward error recovery are not exclusive: backward recovery may be
attempted first; if the error persists, forward recovery may then be attempted. In forward recovery,
it is necessary to assess the damage caused by the detected error, or by errors propagated before
detection; damage assessment can —in principle— be ignored in the case of backward recovery,
provided that the mechanisms enabling the transformation of the erroneous state into an error-free
state have not been affected [And 81]. The tolerance to temporary faults may lead to a special form
of forward recovery: the off-line (with respect to the current computation) restoration of the data
corrupted by the temporary fault(s). In such a case, forward recovery is used in conjunction with
possibly other forms of error processing; examples are provided by a) reading and rewriting the
contents of a memory possessing an error correcting code for tolerating the effects of alpha particles,
and b) in a triad of processors with a majority vote, restoring the data of one processor —affected by
an electro-magnetic perturbation— from the data of the other two processors.

In fault masking, the systematic application of compensation ensures in itself that any error
(provided of course it corresponds to the fault hypothesis of the design process) has been eliminated.
However, this can at the same time correspond to a redundancy decrease which is not known. So,
practical implementations of masking generally involve error detection, which enables compensation
to be applied again, in order to check whether fault treatment has to be undertaken or not".

From the preceding discussion, it appears that the distinguished forms of error processing
—backward and forward recovery, compensation— are in fact primitives which may be arranged in a
wide variety of architectures.

Some previous definitions of compensation consider it within the context of interaction faults
in distributed systems only, where one component provides to another component supplementary
information intended to correct the effects of information it had previously sent (see e.g. [Ran 75]).
The given definition clearly embodies more classical situations such as error correcting codes or
majority votingi^.

The operational time overhead necessary for error processing may differ widely according to
the adopted error processing form. Two extremes from this viewpoint are a) error detection and

1" Utilization of such self-checking components for fault tolerance may be coupled with both forms of error
recovery:

• backward recovery when the self-checking components are processing different tasks;
• a —limiting— form of forward recovery when the self-checking components are processing identical

tasks: switching from one component to another after error detection if the error has affected the
component which was active from the user viewpoint.

' ^ Thanks to the masking effect, this second application of compensation may be performed within an acceptable
delay, off-line with respect to the current computation which was in progress when the error became
effective.

12 It is hoped that the essential idea has been captured, its applicability being a matter of definition of system
boundaries.

1-11

backward recovery, and b) fault masking: the latter provides a time overhead which is much shorter
than the former. In addition:

• in error detection and backward recovery, the time overhead is longer upon error
occurrence than before: it is then related to the provision of recovery points, thus in
fact to preparing for effective error processing;

• in fault masking, the time overhead is always the same.
This remark

a) is of high practical importance in that it often conditions the choice of the adopted
fault tolerance strategy with respect to the user time granularity;

b) has introduced a relation between operational time overhead and structural
redundancy; more generally, a redundant system always provides redundant
behavior, incurring at least some operational time overhead; the time overhead
may be small enough not to be perceived by the user, which means only that the
service is not redundant; an extreme opposite form is "time redundancy"
(redundant behavior obtained by repetition) which needs to be at least initialized
by a structural redundancy, limited but existing; roughly speaking, the more the
structural redundancy, the less the time overhead incurred.

Of importance is the signalling of a component failure to its users. This may be accounted for
within the framework of exceptions [Cri 80, And 81]. Exception handling facilities provided in some
languages may constitute a convenient way for implementing error recovery , especially in forward
recovery for well defined and anticipated situations. However, the use of the term "exception", due
to its origin of coping with exceptional situations —not only errors— should be carefully used in the
framework of fault tolerance: it could appear as contradicting the view that fault tolerance has to be
a natural attribute of computing systems, taken into consideration from the very initial design
phases, and not an "exceptional" attribute.

3- On Maintenance

The frontier between fault treatment and corrective maintenance is relatively arbitrary;
especially, corrective maintenance may be considered as an —ultimate— means of achieving fault
tolerance. The given definitions were adopted for the ability to embody:

• on-line or off-line maintainable fault tolerant systems, as well as non fault tolerant
systems

• preventive as well as corrective maintenance.
Especially, the faults whose removal is the aim of preventive maintenance can be a) physical

faults having occurred since the last preventive maintenance actions, or b) design faults having led
to effective errors in other similar systems.

It is noteworthy within the present context that the current discussions about the irrelevance
of the use of the term "maintenance" when applied to software simply forget the etymology of the
word: in the Middle Age, maintenance was designating the actions performed in order to keep an
army in a state of giving battle, thus including the so-called "adaptative" and "perfective" forms of
maintenance. The association of maintainance with repairing hardware is actually a (recent)
deviation; associating "to maintain" with the notion of service would enable this etymological
meaning to be revived, while at the same time removing the very source of discussion.

CONCLUSION

The contents of this paper are devoid of any "Table of Stone" pretension: the efforts
undertaken are only worthwile in so far as they manage to embody as wide as possible a range of
concepts and therefore those efforts have to keep abreast of technology. Naturally, the associated
terminology effort is not an end in itself: words are only of interest in so far as they transmit ideas,
subject them to criticism, and enable viewpoint to be shared.

1-12

The independence of the basic definitions with respect to any fault class should facilitate the
bringing together of activities which are often considered as separate, such as:

• VLSI testing and software testing;
• hardware reliability (with respect to physical faults) and software reliability (with

respect to design faults), to say nothing of hardware reliability with respect to
design faults;

• computer system security, safety, and reliability.

ACKNOWLEDGEMENTS

What has been dicussed would not exist without the many discussions held with many
colleagues. My thanks go to the members of the "Dependable Computing and Fault Tolerance"
research group at LAAS, and to the members of the IFIP WG 10.4 "Reliable Computing and Fault
Tolerance". Tom Anderson, Al Avizienis, Bill Carter, and Alain Costes deserve a special attention.

REFERENCES

And 81 T. Anderson, P.A. Lee, Fault Tolerance — Principles and Prectice, Prentice Hall, 1981.
Avi 7 8 A. Avizienis, "Fault tolerance, the survival attribute of digital systems". Proceedings of the

IEEE, vol. 66, no. 10, Oct. 1978, pp. 1109-1125.
Avi 84 A. Avizienis, J.P.J. Kelly, "Fault tolerance by design diversity: concepts and experiments".

Computer, vol. 17, no. 8, Aug. 1984, pp. 67-80.
Avi 86 A. Avizienis, J.C. Laprie, "Dependable computing: from concepts to design diversity",

Proceedings of the IEEE, vol. 74, no. 5, May 1986, pp. 629-638.

Boe 7 9 B.W. Boehm, "Guidelines for verifying and validating software requirements and design
specifications", in Proc. EURO IFIP'79, London, Sept. 1979, pp. 711-719.

Car 6 8 W.C. Carter, P.R. Schneider, "Design of dynamically checked computers", in Proc. IFIP'68
Cong., Amsterdam, 1968, pp. 878-883.

Car 7 9 W.C. Carter, "Fault detection and recovery algorithms for fault-tolerant systems", in Proc.
EURO IFIP'79, London, Sept. 1979, pp. 725-734.

Che 7 8 L. Chen, A. Avizienis, "N-version programming: a fault-tolerance approach to reliability of
software operation", in Proc. 8th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-8),
Toulouse, France, June 1978, pp. 3-9.

Crl 80 F. Cristian, "Exception handling and software fault tolerance", in Proc. lOth IEEE Int. Symp.
on Fault Tolerant Computing (FTCS-10), Kyoto, Japan, Oct. 1980, pp. 97-103; also in IEEE
Trans, on Computers, vol. C-31, no. 6, June 1982, pp. 531-540.

Cri 85 F. Cristian, "Exceptions, failures and errors". Technique et Science Informatiques, vol. 4,
no. 4, 1985, pp. 385-390; in French, English version avail, as IBM Reseach Report no. RJ
4130, Sept. 1983.

Elm 7 2 W.R. Elmendorf, "Fault-tolerant progtamming", in Proc. 2nd IEEE Int. Symp. on Fault
Tolerant Computing (FTCS-2), Newton, Massachusetts, June 1972, pp. 79-83.

Gol 8 2 J. Goldberg, "A time for integration", ifr Proc. 12th IEEE Int. Symp. on Fault Tolerant
Computing (FTCS-I2), Santa Monica, CA, June 1982, p. 42.

Gra 7 8 J.N. Gray, "Notes on data base operating systems", in Operating Systems, Lecture Notes in
Computer Science 105, Berlin: Springer-Verlag, 1978, pp. 394-479.

Hay 7 6 J.P. Hayes, "A graph model for fault-tolerant computing systems", IEEE Trans, on
Computers, vol. C-25, no. 9, Sept.1979, pp.875-884.

Hos 6 0 J.E. Hosford, "Measures of dependability". Operations Research, vol. 8, no. 1, 1960, pp.
204-206.

lEE 82 IEEE Std. 729, IEEE Standard Glossary of Software Engineering Terminology, New York:
IEEE, 1982.

Jes 7 7 D.C. Jessep, "Fault-tolerant computing, definition of terms". Report IEEE Computer Society
P610/DI, Feb. 1977.

Lam 81 B.W. Lampson, "Atomic transactions", in Distributed Systems — Architecture and
implementation. Lecture Notes in Computer Science 105, Berlin: Springer-Verlag, 1981,
chap. 11.

1-13

Lap 8 2 J.C. Laprie, A. Costes, "Dependability: a unifying concept for reliable computing", in Proc.
12h IEEE Int. Symp. on Fault Tolerant Computing (FTCS-12), Santa Monica, CA, June 1982,
pp. 18-21.

Lap 85 J.C. Laprie, "Dependable computing and fault tolerance: concepts and terminology", in Proc.
15th IEEE Int. Symp. on Fault Tolerant Computing (FTCS-15), Ann Arbor, Michigan, June
1985, pp. 2-11.

Pea 8 0 M. Pease, R. Shostack, L. Lamport, "Reaching agreement in the presence of faults". Journal
of ACM, vol. 27, no. 2, Apr. 1980, pp. 228-234.

Ran 7 5 B. Randell, "System structure for software fault tolerance", IEEE Trans, on Software
Engineering, vol. SE-1, no. 2, June 1975, pp. 220-232.

Ran 7 8 B. Randell, P.A. Lee, P.C. Treleaven, "Reliability issues in computer system design".
Computing Surveys, vol. 10, no. 2, June 1978, pp. 123-165.

Sie 8 2 D.P. Siewiorek, R.S. Swarz, The Theory and Practice of Reliable System Design, Digital
Press, 1982.

Tay 8 0 D.J. Taylor, D.E. Morgan, J.P. Black, "Redundancy in data structures: improving software
fault-tolerance", IEEE Trans, on Software Engineering, vol. SE-6, no. 6, Nov. 1980, pp. 383-
394.

Wen 7 8 J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith, R.E.
Shostack, C.B. Weinstock, "SIFT: the design and analysis of a fault-tolerant computer for
aircraft control". Proceedings of the IEEE, vol. 66, no. 10, Oct. 1978, pp. 1255-1268.

Zie 7 6 B.P. Ziegler, Theory of modeling and simulation, New York: John Wiley, 1976.

GLOSSARY

Warning: this glossary is provided as an aid for reading the paper. D o not consider it
independently of the paper.

Availability Measure of proper service delivery with respect to the alternation
proper-improper service.

Coverage Measure of the representativity of the situations to which a system
is submitted during its validation with respect to the situations it
will be confronted with during its operational life.

Dependability Property of a computing system which allows reliance to be
justifiably placed on the service it delivers.

Impairments to ~ 1) Undesired, but not unexpected, circumstances causing or resulting
from un-dependability.

2) Faults, errors, and failures
Means for ~ 1) Methods and techniques enabling a) to provide a system with the

ability to deliver a service on which reliance can be placed, and b)
to reach confidence in this ability.

2) ~ Procurement and - validation.
Measures of- 1) Attributes enabling the service quality resulting from the

impairments and the means opposing to them to be appraised.
2) Reliability, availability, maintainability, safety.

~ Procurement 1) Methods and techniques intended to provide a system with the
ability to deliver the specified service.

2) Fault avoidance and fault tolerance.
Un ~ Property of a computing system such that reliance cannot, or will

not, any more be justifiably placed on the service it delivers.
~ Validation 1) Methods and techniques intended to reach confidence in a

system's ability to deliver the specified service.
2) Fault removal and fault forecasting.

Design diversity Approach for the production of systems providing identical services
from independent designs and implementations.

Error 1) Part of system state which is liable to lead to failure.
2) Manifestation of a fault in a system.

1-14

Backward ~ Recovery Form of error recovery where the erroneous state transformation
consists of bringing the system back to an already occupied state.

~ Compensation Form of error processing when erroneous state contains enough
information to enable proper service delivery.

~ Detection The action of identifying that a system sate is erroneous.
Detected ~ Error identified as such by a detection algorithm or mechanism, or

noted by the user.
Forward ~ Recovery... Form of error recovery where the erroneous state transformation

consists of finding a new, never occupied, state, or which was not
occupied since the same error occurred.

Latent - Undetected error.
~ Processing The actions taken in order to eliminate an error from a system.
~ Recovery Form of error processing where an error-free state is substituted to

an erroneous state.
Failure 1) Deviation of the delivered service from the specified service.

2) Manifestation of an error on the delivered service.
3) Transition from proper service delivery to improper service

delivery.
Benign ~ Failure whose consequences are of the same order of magnitude as

those of proper service delivery.
Catastrophic ~ Failure whose consequences are not commensurable with those of

proper service delivery.
Fault 1) Adjudged or hypothesized cause of an error.

2) Error cause which is intended to be avoided or tolerated.
3) Consequence of the failure of a system which has interacted or is

interacting with the considered system.
Active ~ Fault producing an error.
-- Avoidance Methods and techniques aimed at preventing fault introduction.
Design ~ Human-made fault.

~ Diagnostics The action of determining the cause of an error in location and
nature.

Dormant - Fault not activated by the computation process.
External - Fault resulting from the system's interference with its environment.
Hard ~ Synonimous of permanent fault.
~ Forecasting Methods and techniques aimed at estimating the presence, the

creation, and the consequences of faults.
Human-made ~ Consequence of human imperfection.
Intermittent - Temporary internal fault.
Internal ~ Fault inside a system.
~ Masking Result of applying error compensation systematically.
~ Passivation The actions taken in order that a fault cannot be activated.
Permanent ~ Irreversible structural state.
Physical ~ Fault resulting from physico-chemical disorders.
~ Removal Methods and techniques aimed at minimizing the presence of faults.
Soft ~ Synonimous of temporary fault.
~ Tolerance Methods and techniques aimed at providing service complying with

the specification in spite of faults.
Temporary - Fault whose action is not longer than a certain maximum time.
- Treatment The actions taken in order to remove a faulty component from the

computation process.
Transient - Temporary physical external fault.

Maintainability 1) Measure of continuous improper service delivery.
2) Measure of the time to restoration.

Maintenance Actions undertaken in order to remove faults.
Corrective ~ Maintenance aimed at removing faults which have produced

detected errors.
Preventive ~ Maintenance aimed at removing faults before they are activated.

1-15

Recovery point Point in time during the execution of a process for which the then
current state may subsequently need to be restored.

Reliability 1) Measure of continuous proper service delivery.
2) Measure of the time to failure.

Safety 1) Measure of continuous delivery of either proper service or
improper service after benign failure.

2) Measure of the time to catastrophic failure.
Self-checking component Component comprising error detection mechanisms associated to its

functional part.
Service System behavior as perceived by the system user.

Proper ~ Service delivered as specified.
~ Restoration Transition from improper to proper service delivery.
Improper ~ Service delivered differently from specified.
-Specification Agreed description of the expected service.

System 1) Entity having interacted, interacting , or able to interact with
other entities.

2) Set of components bound together in order to interact.
Atomic - System whose internal structure cannot be discerned, or is not of

interest and can be ignored.
~ Behavior What a system does.
~ Component Another system.
~ Environment The other systems interacting or interfering with the considered

system.
~ Structure What enables a system to do what it does.

2-1

THE APPLICATION OF EMULATION TECHNIQUES

IN THE ANALYSIS OF HIGHLY RELIABLE,

GUIDANCE AND CONTROL COMPUTER SYSTEMS

Gerard E. Migneault
Langley Research Center
Hampton, Virginia, USA

Summary

Emulation techniques can be a solution to a difficulty that arises in
the analysis of the reliability of highly reliable guidance and control
computer systems for future commercial aircraft.

This paper first describes the difficulty, viz., the lack of
credibility of reliability estimates obtained by analytical modelling
techniques. The difficulty is shown to be an unavoidable consequence of:
(1) a reliability requirement so demanding as to make system evaluation by
use testing infeasible, (2) a complex system design technique, fault
tolerance, (3) system reliability dominated by errors due to flaws in the
system definition, and (H) elaborate analytical modelling techniques whose
precision outputs are quite sensitive to errors of approximation in their
input data. Use of emulation techniques for "pseudo-testing" systems to
evaluate bounds on the parameter values needed for the analytical
techniques is then discussed. Finally, several examples of the application
of emulation techniques are described.

Introduction

About a decade ago, designs for fault tolerant computer systems began to surface In anticipation of

the guidance and control computing needs of future civil aircraft (e.g., [Bjurman, B. E. et al., 1976],

[Hopkins, A. L. et al., 1978], [Wensley, J. H. et al., 1978]). The reasons were clear and remain so. On

the one hand, demand for safety imposes an elevated, acceptable level of reliability on any system whose

failure can cause fatalities; on the other hand, there is uncertainty about the quantitive relationship

between subtle malfunctions of an aircraft's guidance and control computing system and the probability of

catastrophic consequences involving the aircraft. As a result, any specification of a minimally

acceptable level of reliability for an aircraft's computing system remains problematical and so, to be

generally acceptable, must be conservatively elevated. Credibly conservative levels, however, preclude

the use of conventional (i.e., fault intolerant) systems because of limited levels of reliability of

available components.

In early studies, for example, requirements for an acceptable level of reliability of the systems

and associated components were inferred from the expression "extremely improbable" which appeared in

regulatory documentation pertaining to safety in commercial transport aircraft (FAA, 1970). The

following, variously worded, Informal statements indicate the range of interpretations of the expression

in several studies commissioned by NASA:

"Thus we have a reliability requirement of 10-° per hour of operation for a level 1 or
level 2 function' with no Internal or external backup ..." [Ratner, R. S. et al., 1973]

"... a number less than or equal to 1x10-' has been Imposed ... to represent the
probability of an event designated as extremely Improbable. ... Loss of the
CCV/FBW^ function, given a fault-free system at dispatch, shall be extremely
Improbable." [Bjurman, B. E. et al., 1976]

"... the computer's failure rate will be designed below 10-' failures per hour in
flights of up to ten hours duration, with a preferred goal of 10-'° failures per
hour." [Smith, T. B. et al., 1978]

"... the extrapolated failure of the design in context with production system
application shall not exceed 10-' computer-related system failures in flights up to
ten hours."(sic) [NASA, 1978]

'/ Levels pertain to orlticality of functions, levels 1 and 2 being most critical.

^/ CCV/FBW = control configured vehicle / fly by wire.

2-2

Current regulatory agency documentation is somewhat more explicit in associating "extremely improbable"

with the probability value 10-', but otherwise there has been little change [FAA, 1982]. And one can

expect that there will not be much change in the future. Thus, the following, informal statement, which

is more or less an average of the cited interpretations, will likely remain approximately the requirement

for reliability for a system crucial to flight:

the probability that the system will fail during a flight of up to ten hours duration will

be less than approximately 10-'.

The understanding is implicit that the requirement applies anew to each flight and that, therefore, a

renewal process is being considered. (In military, combat aircraft, requirements for reliability of

computing systems hover about the value 1-10-' for a mission — still beyond the sure reach of computing

systems that are intolerant of faults).

If one ignores failures due to causes external to systems or to inadequately or incorrectly designed

and implemented systems, one can determine that, in order to satisfy the reliability requirement above, a

computer system constructed of devices (that may in turn be constructed of more basic components) with

independent failure distributions and constant failure rates would require, if it were intolerant of the

failure of any of its constituent devices, a mean time to failure (MTTF) of approximately ten billion

(10'°) hours for the least reliable of the devices. Such a system is unlikely to see the light of day in

the near future, to say the least, since realistic, available devices such as processors, memories, etc.,

from which systems can be constructed, do not have such lengthy MTTFs; values in the range from 10^ to

10' are more reasonable. Consequently, computer systems intended to satisfy the reliability requirement

have been designed to tolerate failures.

Consequences of Fault Tolerance

The inherent characteristics of fault tolerance for achieving high reliability give rise to a need

to examine explicitly the implications of a failure mode, failure resulting from a latent fault,

conventionally handled implicitly by testing actual system.

A first, rather obvious characteristic of a fault tolerant system is the redundancy of its

components — at the very least when In an initial condition free of failed components. In the case of

systems with requirements for reliability stated in terms of the first few hours or a small fraction of

expected equipment lifetimes, renewal activities are needed to ensure that the systems are In a condition

perceived to be fault-free before another period of use is begun. This fact, combined with the MTTFs of

realistic, avionics devices ensures that considerable amounts of repair activity will be needed •— to

return systems to the faulti-free, initial condition needed to fulfill the assumptions underlying the

reliability estimates. Thus, the characteristic further suggests, other things unchanging, that the more

"multifunction" the constituent devices are, the more efficient the systems are in terms of total

equipment used and maintained. That is to say, the strategy used to gain the desired reliability goal

gives rise to another goal which cannot be ignored, an economic pressure for designs utilizing

multifunction devices such as microprocessors with software. In striving toward the economic goal,

however, a cost is incurred in a different coin, i.e., greater complexity in the synthesis, logic, and

analysis of systems with parallel and intersecting signal and data paths and time-shared use of resources

and algorithms.

Another, necessary characteristic of a fault tolerant system is its possession of an agent or

mechanism that embodies the intelligence by which redundancy is put to effective use for detecting and

nullifying the erroneous outputs of devices or components. This characteristic may take on a passive

form when some fortuitouus property of nature is present (e.g., parallel rather than series wiring of

Christmas tree lamps guards against an open circuit failure caused by one defective lamp),

or, as appears more likely to be necessary in complex systems, an active form when still more devices and

logic must be added to a redundant system to act as error detectors and nullifiers. Of course, a price

is paid again in increased complexity. Moreover, there is a new failure mode that did not exist before,

viz., failure due to a design flaw in the mechanism. Such a flaw is more pernicious than a simple,

latent fault lying dormant in the other part of the system until an unlikely situation awakens it; a flaw

in the mechanism for reacting to errors necessarily implies a multi-failure event which has not been

foreseen by the designers of the system. Analysis of the reliability of a fault tolerant system rests on

a precarious perch.

2-3

There is a notion which merits a few words at this point for it is about here that it occasionally

arises. The notion is that the requirement for reliability is unnecessarily stringent, as witnessed by

the ten billion (10'°) hour MTTF previously cited. (Indeed, some critics consider the goal of ultra

reliability to be infeasible at best, and the resulting schemes for fault tolerant computers as

"redundancy 'run amok'" [Goldberg, H., 1981, pp 220-222]). Ten billion hours, however, was the value

given for the MTTF (easily computed since it equals the reciprocal of the constant failure rate) of a

fault intolerant system and is inappropriate as a figure of merit for a fault tolerant system of

equivalent reliability at an extremely early stage (I.e., ten hours) of its expected operation. To

understand this, observe the two curves in Figure 1; the curves represent the (failure) probability

density distributions of two systems having the same mean (i.e., the same MTTF). Density A corresponds

to a fault intolerant system; density B, to a fault tolerant system (with redundancy in the form of

simple parallelism). If one supposes that the system of density A satisfies the requirement for

reliability at the required early time (i.e., the area for the first ten hours under the density A curve

is 10-'), then it is abundantly clear that the system of density B is excessively reliable — and

unnecessarily costly. Clearly, the parameters of the system of density B can be relaxed and the required

reliability at ten hours still achieved; but then, its MTTF will be much less than that of density A.

A better figure of merit for a fault tolerant system is provided by the MTTF of systems composed of

several r-out-of-n subsystems (i.e., n parallel, identical devices of which r must be operating for the

subsystem to be operating) in series. And conveniently, a system consisting of a single r-out-of-n

subsystem serves as a reasonable upper-bound estimate of the MTTF of a fault tolerant system when the

representative constituent device chosen is the fault tolerant system's "worst" (i.e., the device type

with the greatest MTTF in the set of constituent devices whose functions cannot be performed by any

combination of the other device types of the system; a processor would be most likely in this set).

Assuming, as before, that constituent devices have independent failure distributions and constant failure

rates, one can show that an r-out-of-n system has a MTTF not very much different from that of its

constituent device, and quite likely less because of factors accounted for by "coverage". Figure 2

contains a simplified behavior model of an r-out-of-n system. Each state corresponds to a set of

possible configurations having a stated number of operating constituent devices. The transition rate out

of a state is (approximately, for small X) the appropriate multiple of the constant failure rate, X, of

one device. Since, given the occurrence of a component failure, a successful transition to another

operating state of less redundancy is problematical, so-called "coverage" parameters, C , are included.

They are conditional probabilities of successful transition given a failure; unsuccessful transitions,

with conditional probabilities (1 - C), are assumed to cause immediate system failure. Usually the

coverage parameters are associated with systems having active recovery processes, but they are also

applicable to passive mechanisms as long as there are transitions which can go awry among

distinguishable, operating states. No distinction is made here. Recognizing this model and its

assumptions as a Markov process, one can easily develop the appropriate differential equations for the

stochastic process [Feller, W. , 1956] and determine in a straightforward manner that the probability of

system failure by time t^ is represented by the expression

1 -e-"^^I^7^a. (^](e^^-1)J

where a = 1 and a. = n.^ C. for j = 1,2,...,(n-r) .

Ratios of system MTTF to constituent device MTTF are tabulated for various combinations of values of

r, n, and C. in Tables 1 and 2. In Table 1, C. = 1 for all J, implying that coverage is perfect.
- - J J
Although the ratios are independent of the constituent device's failure rate (or equivalently, MTTF), not

all combinations of r and n are useful, given a specific device failure rate, when the 10-' requirement

is considered. For instance, a device with MTTF less than 10^ hours could be used to construct systems

with r and n values corresponding to zones p-1 and lower marked on the Table, but not zones p or higher.

More specifically a device with MTTF of five thousand (5x10') hours would not be used to construct

systems of zones t and 5. In Table 2, C = 0.9 and C. = 0.1 for all j !^ 1 , which is excessively poor

coverage since systems are all in zones 9 or higher. In all cases in both Tables the ratios do not

differ from 1 by an order of magnitude. Hence, to the extent that fault tolerant systems are represented

by r-out-of-n systems, a simple and reasonable approximation to the MTTFs of such systems appears to be

simply the MTTF of the "worst" device type, a far cry from the ten billion (10^°) hour value.

2-4

However, having Identified a better approximation to MTTF for fault tolerant systems, it is well to

note that, in the application of interest, the systems will be effectively renewed every ten hours or so.

Hence MTTF, in the conventional sense of an unrenewed system used until system failure, as computed

above, is still not descriptive enough of a system's use. In order to consider the relationship of the

reliability requirement to safety, it is more meaningful to estimate the probability that one or more

system failures, which will be euphemistically called emergency situations, will occur during the

lifetime of a fleet of aircraft with realistic policies for renewal. Therefore, assuming (1) systems

meeting the 10-' requirement when all failure modes are considered, (2) system renewal after every ten

hours of operation, and (3) a fleet of two thousand (2x10^) aircraft each with a lifetime of sixty

thousand (6x10"*) hours, the probability is approximately 0.01 that one or more emergency situations will

occur because of a computer system. It is a matter of judgment, no doubt tempered by economics, whether

or not such a risk to safety is acceptable. Indeed, the estimate does not consider latent failures,

i.e., conditions where physical defects have occurred but have not yet contributed to a data error

because the failed components have not been party to a computation. Such a failure mode could be

modelled as an aging effect on the systems — despite periodic renewals. Hence, the inference must be

made that the value 0.01 above is optimistic. And notice that the computation has not included any

manner of considering the effect of increased complexity as r_ and n increase.

The increased complexity, while ostensibly reducing the incidence of system failures resulting from

component and device failures, is ironically a major source of residual, definitional flaws in systems.

The term "definitional flaw" is adopted here to denote an inadvertent system design which, when the

system is in some particular condition with some unexpected data and regardless of the presence or

absence of conventional component failures or anomalous environments, produces undesirable results which

could have been avoided by another, proper design; the term includes design errors, specification errors

or inadequacies, missing requirements, etc. It matters not whether the flaw is in hardware or software

or is the result of the correct implementation of an erroneous or incomplete specification. The root

cause is human error. Of course, one expects the incidence of such flaws to increase with growth in

complexity. There is a quite large pool of practical experience with such a failure mode — everyone's

'betes noires', the software bugs found in operational software systems — which indicates strongly that

the failure mode must be included, in some fashion, in the analysis of the reliability of complex

systems. Yet, in the avionics applications of interest, the level of system reliability required

effectively precludes the use of thorough, lifetime or use testing of actual systems to determine with

acceptable confidence (i.e., confidence quantified in a statistical sense) that the probability of system

failure due to residual, definitional flaws is compatible with the reliability goals and requirement. As

a consequence, more analytical methods must be developed and relied upon to address total system (i.e.,

logic, largely software, and hardware) reliability (e.g., [Costes, A. et al., 1978]) '-'- but with

acceptable credibility.

Addressing Definitional Flaws

Analogous to the techniques of hardware redundancy, there are techniques for designing systems with

dissimilar redundancy (i.e., with components that are functionally redundant but implemented dissimilarly

either in their hardware or software or both), and in the past decade they have become popular subjects

of study and development — to the point of becoming textbook material [Anderson, T. and Lee, P., 1981]

and practical systems in aircraft (e.g., in the AIRBUS A310 [Martin, D.J., 1982] and in the Boeing 737-

300 [Yount, L. J., 1981J]). Clearly, dissimilar redundancy is intended to reduce the incidence of system

failures attributable to residual, definitional flaws. The schemes apply equally to flaws in hardware

design and software design, but they have been studied more with software in mind. Hence, software is

used here to represent dissimilar redundancy effects in general. There are two, widely known, basic,

software fault tolerance schemes (viz., N-Version Programming and Recovery Blocks with Acceptance Test),

and one or the other is the root of almost every scheme, which is either a variant or an extension,

proposed in the literature or put into practice. While the early schemes were oriented to a sequential

algorithmic process, the later variants and extensions have considered the use of parallel, computing

capabilities. Thus, today there is essentially a parallel of dissimilar redundancy techniques to the

techniques of hardware redundancy.

2-5

Fault tolerant software lends Itself to an especially simple behavior model, as shown in Figure

3(a), on the assumption that successful recovery from a data error caused by a fault in the software (or,

similarly, by a definitional flaw in hardwired logic in the case of hardware) implies no degradation to a

state representing a system with less capability or less redundancy. The rational for the assumption is

that the flaw responsible for the data error was always present in the system; it had simply not been

activated before, so to speak. Thus, if the system, by virtue of its fault tolerance characteristics,

survives the data error, it can be expected to function as before (i.e., there will only be another data

error when an another apparently unusual coincidence of state and input conditions occurs). (As an

aside, experiments using the emulation technique are suggested by this observation — experiments to

determine whether or not software data errors might not better be modelled as error bursts). Figure 3(b)

is a still simpler representation of the same failure and recovery process. Again for the sake of

simplicity, software is assumed to have a constant failure rate, y, and fault tolerant software is

assumed to have an aggregate recovery parameter, k_, analogous to the coverage parameters of the r-out-of-

n hardware model. Immediate system failure is assumed to be the result of lack of successful recovery.

No further elaboration of a software model is attempted. Indeed, short of the argument for adopting

either a conventional or a Bayesian probabilistic model, there exists no justification, and certainly no

empirical evidence, for selecting any other, neither more general nor more particular, model of system

failure due to software, let alone due to the more general condition of residual, definitional flaws.

Reliability Analysis by Mathematical Modelling: How Credible?

The r-out-of-n model of Figure 2 and the software model of Figure 3 suffice, however, to show the

difficulty, when lifetime testing of actual systems is not feasible, of establishing with acceptable

confidence (in the statistical sense) that systems designed to satisfy the 10-' requirement do achieve

the reliability goal. In Figure H, the two models are combined to represent simply a system subject to

and tolerant of both hardware component failures and errors due to residual, definitional flaws

(represented here by the software). An additional assumption is made to keep the illustration simple,

viz., that the software and hardware behave Independently. Clearly, that is a simplification and it is

possible to add more complexity to the model, but, as stated before, there is no empirical evidence to

justify selecting any particular model in preference to another. Also, and more to the point here, the

conclusion below is not appreciably modified. Thus, again recognizing the model and its assumptions as a

Markov process, the probability of system failure is computed to be

1 - ^-(nX-ul^-k])t jn-r ^^ ^n^ ^^Xt _ ^^j

where a„ and a. are as before.
0 J

For a typical (and optimistic) value for X (=10-"* failures per hour in a hardware component),

typical values for n (* 3 to 5 components in parallel), and the required value for t (= 10 hours), bounds

on C , C , and vi(l-k) required for the system to satisfy the 10-' requirement are calculated to be as

follows:
0.999999 S C^ < 1 .0

0.9999 S C^ £ 1 .0

u(l-k) S 10-'°

Note that there is in general a coupling between physical and logical redundancy techniques and guidance

and control schemes — e.g., the choice of control laws is constrained to those capable of tolerating

time lost in reconfiguration, etc. The numbers above leave little margin for error in designing systems

to satisfy the 10-' requirement. Refinement of the model cannot eliminate the difficulty in estimating

precisely the reliability of such systems; it can only transform it into an equivalently demanding

knowledge of a different set of parameters, for the systems must still achieve the same aggregate

behavior as above.

More Complex Models

In the process of investigating fault tolerant systems (previously, principally studies of

hardware), numerous models have been developed for analyzing the reliability of such systems. Studies

have also been undertaken into models to relate the system failure modes to time-variable computational

and performance requirements, thus attaching the reliability of a system more tightly to its applications

[Meyer, J., 1977], [Beaudry, M. D., 1978], [Castillo, X. and Siewiorek, D., 1982], [Iyer, R. and

2-6

Rossettl, D., 1982]. And over the years many model evaluation schemes have been "computerized" to serve

as more or less general purpose tools for the convenient analysis, in the architectural design stage, of

systems composed of complex arrangements of elements, e.g., CAST [Cohn, R. B. et al., 1974], CARE II

[Stiffler, J. J., 1971], CARSRA [Bjurman, B. E. et al., 1976], ARIES [Ng, Y., 1976], HARP [Trivedi, K. et

al., 19811], SURE [Butler, R. W. , 1981], and CARE III [Bavuso, S. and Peterson, P., 1985]. Although they

consider details of systems behavior such as recovery (detection, isolation, reconfiguration) strategies,

sparing (active, stand-by, switching) strategies, transient and intermittent fault (duration,

periodicity, leakage) modes, functional dependence among devices, nonexponential failure distributions,

etc., the models that the various "computerized" evaluation schemes handle are still constructed from

parametric descriptions of aggregate system, subsystem and (or) device behavior in order to make use of

mathematical techniques applicable to idealized stochastic processes and to reach levels of reasonably

efficient computation. Hence, all the models contain parameters whose values need to be assumed or

known, by some other means, in order to precisely represent any and each particular system design of

interest. The credibility of any reliability assessment gotten by the use of these mathematical

techniques obviously hangs upon the inaccuracies and Imprecisions of the models, their forms and the

values of the parameters. But knowledge of these inaccuracies and Imprecisions can only come from

empirical observations, i.e., testing and experimentation.

Lifetime or use testing of fault tolerant systems appears infeasible if the systems approach their

reliability goals; however, selective testing and experimentation can be performed to obtain knowledge

about specific aspects (e.g., values of parameters) of the mathematical models. The physical and

statistical nature and number of flaws, faults, and failures, however, still make the use of actual

systems impractical. Surrogates, preferably abstract, into which faults and flaws can be readily

introduced are needed •— but they must be able to faithfully reproduce the behavior of the particular,

actual systems. Digital simulations which mimic the working of the internal, logical.structures of the

systems being studied are such surrogates.

Digital Simulation

The word "simulation" is usually used to denote all manner of techniques for, among other purposes,

analyzing the behavior of objects and their environments by means of implementation and manipulation of

more conveniently malleable surrogates, but here the word is limited to mean the use of computer systems

as surrogates — at whatever level of abstraction found meaningful to an application. The concept of

system is stressed because usefulness of a simulation scheme depends upon both software and hardware — a

characteristic more effectively utilized by emulation. For example, consider even the high level

reliability analysis programs previously mentioned — CAST, etc. Although they are essentially

simulation schemes which are normally discussed without regard to host computer hardware, in any actual

application, the hardware of the host computer will be an important constraint upon the amount of detail

which it will be feasible to consider with the programs.

Digital simulation at the level of gate logic has been discussed for some time in the literature on

computers and considered as a tool for design and fault (signature) analyses of digital logic circuits at

levels of detail ranging from simple (e.g., assuming gates to have only two possible output values) to

complex (e.g., allowing undefined values of gate outputs and various timing anomalies) [Szygenda, S. and

Thompson, E., 1975]. For the analysis of circuits the sizes of microprocessors, memories, and larger,

simulation techniques at a more aggregate, functional behavior level have been used (e.g., [Menon, P. and

Chappell, S., 1977] and [Armstrong, J. R. et al, 1985]) as the gate level simulation costs become

prohibitive when compared to perceived benefits.

However, for the purposes of reliability analysis of fault tolerant systems, gate level simulation

warrants considerable cost in view of the conclusion to be drawn from the preceding paragraphs that, at

the levels of reliability of interest, the probability of failure of such systems is less dependent upon

the mode of failure resulting from depletion of redundant resources than it is upon the less well

understood and questionably modeled modes considered under the terms "coverage" and "definitional flaws".

A similar conclusion to the effect "that the introduction of a redundancy at the hardware level increases

the relative influence of software faults" is made elsewhere (Costes, A. et al., 1978). Unfortunately,

while the costs could be borne, in light of the benefits, gate level simulation is not always a feasible

technique for application to questions involving chance events and repeated trials because it is time

consuming — orders of magnitude slower than likely target systems.

2-7

Emulation

In ordinary use, the word "emulation" means an endeavor to equal or excel; in the present context,

it is reserved for a particular technique of Implementing simulation possible when the hardware of the

host (computer) is dedicated to the task (e.g., hardwired or microprogrammed). The technique is most

often associated with hardware implementations of logic simulators for computer-aided design applications

[Blank, T., 19814. Microprogramming Is significant because It provides an alternative to the creation of

special hardware for emulation purposes. In general, microprogramming allows a final definition of a

host computer's "apparent" instruction set to be postponed until after the definition of the host's

hardwired logic is completed, and it does this with an acceptably small risk that the hardwired logic

will need redesign. This happens because a "real" instruction get Is defined by the hardwired logic, is

at a quite primitive level, and is tailored especially for executing algorithms which. In turn, become

operational definitions of less primitive operations — the "apparent" instruction set. It may be said

that a computer defined by an "apparent" Instruction set does not really exist; it is "emulated" by

microprogrammable hardware by means of mlcrocoded algorithms. Admittedly, variations in efficiency of

variant microcode operations vis-a-vis various "apparent" instruction sets may exist, but they can be

Ignored for the present purpose. What Is notable is that, given reasonable care not to mismatch host and

target computers, microprogrammable computers can perform In the role of an "apparent" computer

approximately as efficiently as would either a hardwired version of the "apparent" computer or a

hardwired emulation algorithm. Of course, the existence of parallel processing capability either in the

emulated or the host hardware can alter the relative speed of an emulation. Nevertheless, by the use of

microprogramming, emulation occurs at a level of detail which permits software Implemented for another,

"apparent", target computer to be executed directly by a host computer. That is, no modification of the

target software is needed to make It compatible with the host computer, and no special software on the

host computer needs to be generated (more importantly, no simulation program in an "apparent" instruction

set on the host to Interpret the instructions of the target software and mimic the target computer) as

would be needed on a non-microprogrammable computer.

Addition of diagnostic, control functions to an emulation capability, as an add-on to hardwired

emulation logic or in the microcode of a microprogrammable host computer, permits the host to act not

only as a surrogate but also as a device for observing and recording (and possibly analyzing) target

software performance in an ostensibly natural environment. Such "diagnostic emulation" has been used for

the development and maintenance of special software systems and is, seemingly, "emulation" in the

dictionary sense. As might be expected efficient use of such a diagnostic system requires support

capabilities for readily modifying mlcrocoded algorithms defining target computers. What has been less

well considered Is the fact that such capabilities can be extended to permit analysis not only of

software but also of systems (I.e., software and hardware) — and not only as they are Intended to be but

also as they are not. By emulating target computer systems In sufficiently fine detail, combinations of

failures in individual components, anomalous data, and definitional flaws can be introduced and their

effects at the system level observed rather than assumed. Thus, emulation provides a conveniently

manipulated failure effects analysis tool.

In addition, with automated diagnostic and system and environment controls, emulation can be used to

generate repeated trials of "emulated" systems from which failure ratios and histograms can be tabulated

for analysis — hence, aggregate behavior models verified and parameter values estimated with some

measure of confidence (in a statistical sense). Clearly, assumptions about the manners and rates of

occurrence of failures and flaws must still be made in order to introduce these last into the emulations.

However, while the credibility of precise assumptions will still be questionable, credibly pessimistic

assumptions could be used to demonstrate that particular fault tolerant system designs exceed their

reliability requirement.

Examples of the use of Emulation

As examples of the application of emulation to analyses of the reliability of fault tolerant

systems, consider the following two studies — one long completed, the other underway. In addition to

their obvious purposes of analysis, the studies were done to provide experience In the use of an

emulation capability for the AIRLAB facility at NASA's Langley Research Center. The implemented

emulation technique was proposed In 1976 precisely for providing abstract surrogates credibly

representative of the Internal structures of fault tolerant, digital systems of the types to be used in

avionics and guidance and control systems for aircraft. There are two current implementations of the

algorithms that comprise the technique: one is as a code running on a dedicated, horizontally

microprogrammable computer; the other runs on a general purpose computer. (There are, of course, other

manners of implementing the technique, as there are other algorithmic processes for simulating the

behavior at the logic level of digital, computer systems — e.g., GLOSS [M Gough, J., 1983], also

developed for use in the AIRLAB). The microprogrammed technique may be summarized as follows:

1- It is a hybrid scheme. That is, although the nominal level of detail is the gate logic level, the

scheme facilitates the representation of different parts of a digital system at different levels of

detail — usually, for computational efficiency, at a less detailed and more functional level, but

also, if needed, at a more detailed level than even the gate logic level.

2- It is a generic scheme in the sense that it uses the same algorithm for all emulated networks and

in contrast to embedded network schemes that compile the system definitions into a computer

program. Embedded network schemes presumably need a compilation for each separate network and,

therefore, additional validation; thus, they appear more suitable to simple verification and

validation of software — where there is no consideration of failures in the underlying hardware.

3- It is a quasi event-driven scheme. That is, emulated time advances by fits and bounds to the next

dynamically scheduled event(s); no host computer time (or resource) is consumed emulating inactive

systems -!- but at a cost of maintaining a dynamic schedule of events.

*)- It is a unit propagation delay scheme — for the most part -- in its handling of gates. In its

normal mode of use all gates are presumed to share the same propagation delay. However, varied

delays can be accomodated by specially definable means.

5- It is mainly a binary valued scheme, since its principal data structure accomodates only TRUE and

FALSE values for the outputs of its nominal, primitive devices. However, more complex, multi-state

behavior can be accomodated, at a cost in running time, again by specially definable means.

6- Finally, it is a sequential processing scheme because of the limitations of the host hardware. The

algorithmic scheme does, however, contain latent parallelism corresponding to concurrency among

events in the system being emulated; advantage, therefore, could be gained from host hardware which

could accomodate the parallelism.

The First Example: The first effort, of limited scale, was undertaken in order to determine

whether or not an emulation scheme could be devised which would be sufficiently efficient to support

analyses of target systems of meaningful sizes and complexities, and to demonstrate that such a scheme

could be implemented in a manner convenient for analysis purposes by users not well versed, it at all, in

the emulation scheme itself. The study was performed on a large, general purpose computer whose

underlying micro-code was sacrosanct. For that reason, emulation was really simulated. This last level

of complication can be accounted for by introducing a time scale factor and otherwise ignored here. The

analysis performed was a study of the efficacy of five (5) particular algorithms, each with a different

instruction mix, as detectors of component "stuck-at" faults (i.e., latent failures) in a hypothetical

target computer. The analysis is documented in detail in [Nagel, P., 1978].

The hypothetical, target computer was originally generated (i.e., defined at the gate logic level)

as a vehicle for checking out the original (and modified) versions of the emulation algorithms, and for

demonstrating the ability of support software, a hardware description language translator and meta-

assembler for regenerating target software, to respond semi'-automatically to hardware design changes.

The hypothetical computer had a memory of 8192, 15 bit wide words, a CPU with a count of approximately

2000 gate equivalents, and a single input-output register/port. The logic was arbitrarily assigned to

four (H) hypothetical chips: a "clock" chip, an "adder" chip, an "op-decode" chip, and a miscellaneous

odds and ends chip. The instruction set contained about a dozen basic instructions.

The emulated system trials were simple. The five algorithms, ranging in length from about a dozen

instructions to several hundreds, were repeatedly executed, with randomly selected initial data, and

randomly selected faults of random components. Distributions of time from fault occurrence to fault

detection (i.e., fault latency duration) were measured. Two analyses of the sort that would be of

interest in studies of fault tolerant systems were made. First, the observed distributions were fitted

against commonly used mathematical models, e.g., exponentials, as would be done in order to determine

models and parameter values for use in reliability analysis programs. Although the results were not

2-9

initially considered significant, owing to the fanciful nature of the emulated system, they were later

corroborated by an analogous but more thorough study using a real computer [M Gough, J. and Swern, F.,

1981]. That the distributions each exhibited different nonzero probabilities of never detecting the

faults was predictable, but only an experiment of this nature could determine the differences in

magnitude. Secondly, a search was made for correlations among the distinguishable characteristics of the

algorithms and the distributions. The only significant correlation found was between instruction mix and

detection probability. Here too, because of the nature of the target system, the magnitudes of the

correlations were not considered definitive. But the concept is nevertheless a useful one — for

determining which characteristics should be avoided in algorithms whose function is to reconfigure a

system after a failure has been detected, or which characteristics should be used in those algorithms

whose function is to detect latent failures. The latter aspect is particularly applicable to the purpose

of the second example below.

The Second Example: Currently, the emulation system is being used to examine the self-diagnostic

characteristics of the Communicator/Interstage (C/I) of a particular Fault Tolerant Processor (FTP)

(described in [Smith, T. B., 1984]) proposed for use in the Advanced Information Processing System (AIPS)

being developed for NASA's Office of Aeronautics and Space Technology. In the study [NASA, 1985], the

target system consists of the FTP'S four C/Is, which interface with each other and with a number of

processors (four at the time of writing) that compute redundantly. Among other tasks, the C/Is each vote

the redundant outputs, exchange, and pass on (return) the voted output — thus, hopefully, ensuring that

the processors work upon the same, mutually agreed upon quantities at the next iteration. Under control

of the processors, diagnostics can be performed in search of latent, hardware faults in the C/Is, whose

logic consists of about four thousand (4x10) gate equivalents and a small amount of read only memory.

In the study, various faults will be inserted into the C/Is to discover what proportion will be

detected by the preplanned diagnostic test vectors. Two types of outcomes are anticipated. First, the

study will verify that the set of test vectors will detect all inserted faults. Should this not prove to

be so, the set of test vectors will be expanded and the study repeated until the statement is true. At

the same time, and as a secondary benefit, "superfluous" test vectors will be identified r-r for the

obvious reason of making the diagnostic less time consuming, more efficient, etc.; such a result was

achieved in a similar study of the self-diagnostic code for an avionics processor [M Gough, J. and Swern,

F, 1983]. Secondly, distributions of the times to discovery of the faults will be developed, information

of direct relevance in the development of appropriate mathematical models for

analyzing the reliability of the FTP.

Conclusion: Reprise

A case has been made for the use of emulation techniques as a needed and useful adjunct to

mathematical models for the reliability analysis of highly reliable avionics and guidance and control

computer systems. Given the lack of lifetime testing of actual systems, without, at the very least, the

use of such surrogate analysis tools the trust to be placed in fault tolerant systems in life-critical

situations requiring high reliability must remain dubious.

REFERENCES

Anderson, T. and Lee, P. A., FAULT TOLERANCE Principles and Practice, Prentice/Hall International, Inc.,
Englewood Cliffs, New Jersey, 1981

Armstrong, J. R., Tront, J. G., and Li, K. W., "Modeling and Simulation of the Effects of Internal
Transient Upsets on Microprocessors", in TRANSACTIONS of The Society for Computer Simulation, Vol 2, No
1, May 1985, pp 73-93

st
Bavuso, S. J. and Petersen, P. L., CARE III Model Overview and User's Guide, 1 revision, NASA TM 86404,
Langley Research Center, Hampton, Virginia, April 1985

Beaudry, M. D., "Performance-Related Reliability Measures for Computing Systems", in IEEE Transactions on
Computers, Vol C-27, No 6, June 1978, pp 540-7

Bjurman, B. E., Jenkins, G. M., Masreliez, C. J., McClellan, K. L., and Templeman, J. E., Boeing
Commercial Airplane Company, Airborn Advanced Reconfigurable Computer System, NASA Contractor Report
145024, Langley Research Center, Hampton, Virginia, August 1976

2-10

Blank, T., "A Survey of Hardware Accelerators Used In Computer-Alded Design", in IEEE Design & Test,
August 1984, pp 21-39

Butler, R. W., The Semi-Markov Unreliability Range Evaluator (SURE) Program, NASA TM 86261, Langley
Research Center, Hampton, Virginia, July 1984

Castillo, Xavier and Siewiorek, Daniel P., "A Workload Dependent Software Reliability Prediction Model",
in Digest of Papers of 12 Annual International Fault-Tolerant Computing Symposium (FTCS-12), June 1982

Cohn, R. B. et al., Ultrasystems, Inc., Definition and Trade-Off Study of Reconfigurable Airborne Digital
Computer System Organizations, NASA Contractor Report 132552, Langley Research Center, Hampton, Virginia,
1974

Costes, A., Landrault, C, and Laprle, J. C. , "Reliability and Availability Models for Maintained Systems
Featuring Hardware Failures and Design Faults", in IEEE Transactions on Computers, Vol C-27, No 6, June
1978, pp 548-60

FAA FAR part 25, paragraph 25.1309(b), dated 5 August 1970

FAA Advisory Circular No. 25.1309-1, System Design Analysis, dated 7 Sep 82

Feller, W. , An Introduction to Probability Theory and Its Application, Vol I, John Wiley & Sons, Inc.,
New York, 1966

Goldberg, H., Extending the Limits of Reliability Theory, John Wiley 8e Sons, New York, 1981

Hopkins, A. L., Smith, T. B., and Lala, J. H., "FTMP -- A Highly Reliable Fault-Tolerant Multiprocessor
for Aircraft", in Proceedings of the IEEE, Vol 66, No 10, October 1978, pp 1221-39

Iyer, R. V., and Rossetti, D. J., "A Statistical Load Dependent Model for CPU Errors at SLAC", in Digest
of Papers of the 12 Annual International Fault-Tolerant Computing Symposium (FTCS-12), June 1982

Martin, D. J., "Dissimilar Software in High Integrity Applications in Flight Controls", in Software for
Avionics, AGARD Conference Proceedings No 330, September 1982

M Gough, J., and Swern, F., Bendix Corporation, Measurement of Fault Latency in a Digital Avionic Mini
Processor, NASA Contractor Report 3462, Langley Research Center, Hampton, Virginia, October 1981

M Gough, J., and Swern, F., Bendix Corporation, Measurement of Fault Latency in a Digital Avionic Mini
Processor, NASA Contractor Report 3651, Langley Research Center, Hampton, Virginia, January 1983

M Gough, J., Bendix Corporation, Feasibility Study for a Generalized Gate Logic Software Simulator, NASA
Contractor Report 172159, Langley Research Center, Hampton, Virginia, July 1983

Menon, P. R. and Chappell, S. G. , "Deductive Fault Simulation with Functional Blocks", in IEEE
Transactions on Computers, Vol C-27, No 8, August 1978, pp 689-95

Meyer, John F., "Reliable Design of Software", in Rational Fault Analysis, Sacks and Liberty, eds..
Marcel Dekker, Inc., 1977

Meyer, J. F., University of Michigan, Models and Techniques for Evaluating the Effectiveness of Aircraft
Computing Systems, NASA Contractor Report 158993, Langley Research Center, Hampton, Virginia, July 1978

Nagel, P., Vought Corporation, Modeling of a Latent Fault Detector in a Digital System, NASA Contractor
Report 145371, Langley Research Center, Hampton, Virginia, September 1978

NASA Contract NASl-15428, Statement of Work for "Development and Evaluation of a Software Implemented
Fault Tolerance (SIFT) Computer", Langley Research Center, Hampton, Virginia, July 1978

NASA Contract NASl-17964, Task Assignment #5 — Diagnostic Emulation Experiment, Langley Research Center,
Hampton, Virginia, 20 May 1985

Ng, Ying-Wah, Reliability Modeling and Analysis for Fault-Tolerant Computers, University of California at
Los Angeles, Engineering Document UCLA'-ENG-7698, September 1976

Ratner, R. S., Shapiro, E. B., Zeidler, H. M., Wahlstrom, S. E., Clark, C. B., and Goldberg, J., SRI
International, Design of a Fault Tolerant Airborn Digital Computer, Volume II - Computational
Requirements and Technology, NASA Contractor Report 132253, Langley Research Center, Hampton, Virginia,
October 1973

Smith, T. B., Hopkins, A. L., Taylor, W., Ausrotas, R. A., Lala, J. H., Hanley, L. D., and Martin, J. N.,
The Charles Stark Draper Laboratory, A Fault-Tolerant Multiprocessor Architecture for Aircraft, Volume I,
NASA Contractor Report 3010, Langley Research Center, Hampton, Virginia, July 1978

Smith, T. B., "Fault Tolerant Processor Concepts and Operation", in Digest of Papers of the 14
International Conference on Fault-Tolerant Computing (FTCS-14), June 1984, pp 158-63

Stiffler, J. J., The Raytheon Corporation, Reliability Model Derivation of Fault-Tolerant, Dual, Spare
Switching, Digital Computer System, NASA Contractor Report 132441, Langley Research Center, Hampton,
Virginia, 1974 ■ ■ . .

Szygenda, S. A. and Thompson, E. W., "Modeling and Digital Simulation for Design Verification and
Diagnosis", in IEEE Transactions on Computers, Vol C-25, No 12, December 1976, pp 1242-53

2-11

Trivedl, K., Dugan, J. B., Geist, R., and Smotherman, M., "Hybrid Reliability Modeling of Fault-Tolerant
Computer Systems", in Computing & Electrical Engineering, Vol 11, No 2/3, Pergamon Press, 1984, pp 87-108

VLSI DESIGN Staff, "1985 Survey of Logic Simulators", in VLSI DESIGN, March 1985, pp 74-80

Wensley, J. H., Lamport, L., Goldberg, J., Greem, M. W., Levitt, K. N., Melliar-Smith, P. M., Shostak, R.
E., and Weinstodk, C. B., "SIFT: The Design and Analysis of a Fault-Tolerant Computer for Aircraft
Control", in Proceedings of the IEEE, Vol 66, No 10, October 1978, pp 1240-54

Yount, L. J., "Architectural Solutions to Safety Problems of Digital Flight-Critical Systems for
Commercial Transports", AIAA/IEEE Digital Avionics Systems Conference and Technical Display, Baltimore,
Maryland, December 1984

2 —

10

Table 1 — Ratio
MTTF of r out of n system (C. = 1)

MTTF of constituent

5

- all

.35

zones

.31

y or higher -

.27 .23 .21

4 .43. .37 .31 .27

3 .55 .45 .37 .31 .27

2 .78 .60 .46 .38

10

MTTF
Table 2 — Ratio

of r out of n system (C. = .9, C
j-^l

.1)

MTTF of constituent

2-12

d (Probability
dt (of Failure

10-"

10-

A: fault intolerant system

° /

0 2 ; B: fault tolerant system
/ (2 out of 5)

axio" 10-
MTTF

Time (hours of operation)

3x10"

Figure 1 Failure Distributions With Same MTTF

(n)- *ai '—►fn-l ^ ^g > n-2

1-C, 1-C, 1-C

Failed System State

Figure 2 r out of n system with coverage parameters

. Operating . , Operating ,

yd-k)

' Failed ^

Figure 3a — Fault Tolerant Software — Figure 3b

nA

u(1-k)

n-1
(n-l)X C

■ra—i^^—* n-2
(n-2)A ... n-r

1-C, p(1-k) 1-C, u(1-k)
■'

1-C

rA

y(1-k)

Failed System State

Figure 4 r out of n system with coverage parameters
and a fault tolerant software scheme

3-1

SOME APPROACHES TO THE DESIGN OF
HIGH INTEGRITY SOFTWARE

by

Professor J.T.Shepherd
Techiucal Director

Dr DJ.Martin

Mr R.B.Sinith
Principal Engineer

Combat Aircraft Controls Division
GEC Avionics Ltd

Rochester, Kent ME 1 2XX
UK

1.0 INTRODDCTION

As the complexity of aircraft systems has increased and the performance requirements for
such aircraft have become more demanding the number of safety critical systems carried
has increased.

This allied to the preponderance of digital systems on board the aircraft has meant that
the software requirements of safety critical systems has become one of the pacing items
in the development of new aircraft.

In the early days of high integrity systems analogue techniques were used and a variety
of redundancy techniques were developed to cope with the need to obtain the required
level of integrity from system elements whose inherent reliability was low.

With the advent of digital systems it is necessary to consider how such integrity can be
achieved with the software of the system so that the total integrity of a safety critical
system can be maintained.

There are in fact two methods which can be used to achieve this:-

a) fault avoidance
b) fault tolerance.

Of these, fault avoidance has been the main method used to date to achieve high
integrity software and for example such digital flight control systems as are flying
today have used fault avoidance as the main method of ensuring the integrity of the
flight control software. Thus, the F8 experimental fly by wire system, the Jaguar fly
by wire system, the YC14 AFCS and the LlOll ACS have all used fault avoidance
techniques.

Fault avoidance techniques require the detailed application of structured design methods
along with rigorous quality control and systematic testing of the software so that the
probability of a software 'bug' being introduced or remaining undetected is extremely
low. Such methods should of course be used in all software development and safety
critical software is mainly distinguished from non safety critical software by the use of
very small and very simple modules. Such modules are easy to verify and it is hoped that
by such techniques that high integrity can be achieved.

In practice of course, no matter how carefully the software is designed it is impossible
to establish that it is completely error free since the large number of possible states
preclude exhaustive testing and the statistical analysis methods used in hardware
development are not applicable to software.

Since a military aircraft is required to demonstrate a probability of failure due to say
flight control failure of 1 x 10"^ per hour of flight and a civil aircraft requirement is
two orders greater than this it is apparent that with fault avoidance techniques it is
impossible to predict that the required level of integrity has been achieved. From this
it follows that other methods which can be shown to be effective must be employed and
thus fault tolerance methods must of necessity be considered.

In considering software fault tolerance methods, it is necessary to remember that the
adoption of such methods should not mean that the design techniques should be abandoned.
There is a wealth of data available to indicate that on average only 49% of the faults
inherent in a program are discovered prior to entry of that software into service. While
a good fault tolerance design might prevent the remaining faults from having a
catastrophic effect on the system, the belated discovery of such faults and the resultant
need to modify and reverify the program, increases the life cycle costs dramatically.

Thus fault tolerance methods and fault avoidance methods should go hand in hand. The
resultant design should then be extremely reliable as well as giving the required level
of integrity.

3-2

2.0 GENERAL CONSIDERATIONS OF SOFTWARE RELIABILITY

Failures in software stem from two major causes:

a) Design errors
b) Coding errors.

In practice of course, it is irrelevant to consider these categories as being different
since both are due to errors made by the design and development team and a better
classification is to consider faults in two categories:-

a) Faults occurring during the development and testing phases of the software
programme.

b) Faults occurring during the inservice life of the software. This type of fault is
known as a residual fault.

The prevention and discovery of the first category of faults is aided by the use of fault
avoidance methods, notably:-

a) Top down structured design methods using such specification and design aids as SAFRA
and MASCOT.

b) Structured programming.

c) The use of a block structured language such as CORAL 66.

d) The use of a powerful host computer during the development phase. The host used
should have the ability to target the software to the final computer.

e) The use of a well developed and debugged compiler.

f) The use of structured walk throughs and good quality assurance techniques.

g) The preparation of good documentation.

h) The use of formal change control procedures.

These methods allied to extensive testing are the main techniques to be employed to
provide fault avoidance and it is of interest that to date the organisations developing
high integrity software, while in general following these practices have been reluctant
to use high level languages.

The reason for this is that the key to fault avoidance is complete visibility and the
lack of this in the compiler means that the development team cannot be assured that the
compiler is error free. The use of fault tolerance techniques allied to the fault
avoidance methodology should ensure that the number of residual faults are few and that
the occurrence of these faults in service does not have a catastrophic effect on the
system. When these techniques have been introduced, then high level languages can be
considered.

3.0 THE FAULT AVOIDANCE APPROACH

As was stated earlier, fault avoidance techniques had been the main method used to date
to provide high integrity software. To illustrate this, the following description of the
software development for the Jaguar Fly by Wire system is used.

The essential requirement of high integrity software is visibility and this has been
achieved by the use of simple software structures, clear requirements definition,
thorough testing and design audit, detailed documentation and rigorous production and
configuration control.

3 .1 Flight Software Organisation for Jaguar Fly by Wire System

The real time control is achieved by a hardware Master Reset Timer which calls a
non-interruptable Executive. The Executive then calls a number of Frames in a defined
sequence designed to provide the required iteration rates for the various parameters. A
Frame is a processing time slice containing related functional modules. One Frame
typically contains signal selection, control law and logic module functions and consists
of a set of program modules each of which defines a function that is easily defined,
implemented, tested and audited.

The structure of the flight resident program is shown schematically in Figures 3-1

3-3

Lb

1
1 u
T

1
—1

* , *
FK 1- ' Lo« h—►

1 1
*—1

FEt I ^r^ 1
—1

FE2 1 I LOC fc ►

1
—I

FE3 J 1 LOO L t

1 1
—1

FE4 1 u^
1

'—1 FES 1 1 r t=^
1

—1
FES 1

1
FET 1

STW

Figure 3-1 Control Flow - Executive & Frames

3.2 Flight Software Development Process

The flight software implements the aircraft control functions and meets the needs of the
safety requirements. To ensure that both requirements are met, each stage of the design
process was accompanied by formal testing and auditing.

Each design and test task was documented and design reviews were held at key stages of
the software development to maintain a continuous check of integrity. Following initial
design approval, configuration control was enforced to permit only authorised changes.

The key design requirements document for the Plight Resident Software (FRS) is the
Software Requirements Document (SRD). The SRD controls the design implementation and has
been the prime software interface between BAe and GEC Avionics Ltd.

The SRD was prepared in conjunction with BAe and it uses a mixture of English Language
and program statements. These statements are intended to eliminate definition ambiguity.
They form the basis of the definitive software design specification and are testable to
prove the accuracy of the requirements definition.

The Software Structure Document CSSD) contains the running order of the modules within
each program segment. The structure is designed to ensure that the chronological flow of
data from input, through processing to output, is in strict sequence.

The codes of practice used in designing flight control software are contained in the
Programmers Manual and the testing requirements for each phase are contained in the
Testers Manual. These Manuals also define the procedures and documentation require-
ments for build standard, modification and quality assurance control.

The overall software development process is shown diagrammatically in Figure 3-2.

3^
OCSION
SPK

REVIEW

MODULE
UNKAGC
TZSn

ASSCHBLEK
CMCCX5

LOAD

INTO

cOMncuMncM
COHTMOl
CHECKS

Figure 3-2 Software Development Process

3-4

4.0 METHOD OF INTEGRITY APPRAISAL

4.1 Introduction

The Integrity of the IFCS is primarily determined by the system architecture and
therefore the primary elements of maximum concern are the points at which the redundant
channels are consolidated or otherwise connected, together with the potential of a safety
critical defect in the software or firmwhere.

A variety of methods of appraisal to assess flight worthiness were used, and these are as
follows:-

i) General performance testing and safety assessment.

ii) Detailed performance testing and safety assessment of specific functions.

iii) Operational performance assessment.

iv) Design practices used for the specification and implementation of the function.

It was necessary to assess flight worthiness in a qualitative as well as a quantitative
way, as many of the issues involved did not lead to useful quantitative estimates of
safety critical risk.

SYSTEM IWTEG«Ty

J ^
[OUAHTITATH RISK

OUUTATrVE RBX

sofTwiWE _^ *«tuis«. or __ KXr/. COVSUCC S«Cl£
HTKRITY SPtCnC FUPCT06 "^ *HD S«CrC FWCTim

^^ ^ , «TDI,HO«rTO(l I
SrSTEH AfnuiSAL C04F«UWai

HioKtwenm «»CMTttnf« ^ ' j tertcnai
WTlGfllTY tfnUOM.

X FMB* /
OUMriCATICM
TESTMO NO
MSHcnx

MTc moMce I
COmUGC JHULVSa KiW-IN
ttuirwi

NCLWtlUTT
NWirsa

Figure 4-1 Integrity Appraisal

The main elements of the appraisal/audit methodology, are shown in Figure 4-1 and
summarised as follows :-

i) 100% coverage single fault FMEA.

ii) Multiple fault FMEA for specific combinations.

iii) Flight resident software integrity appraisal.

iv) Appraisal of specific functions.

v) Configuration inspection.

vi) Qualification programme.

vii) Burn-in programme.

The primary elements were supported by:-

a) Module, chassis and LRU FMEAs

b) Microprogram appraisals

c) Voter/monitor appraisals

d) Tolerance Analyses

e) BITE coverage analyses

f) System architecture analyses

g) Reliability analyses.

During the course of the integrity appraisal detailed technical evaluations of various
features and functions of the IFCS were made. The requirements for these evaluations
were generated mainly from the mainstream FMEA activity, and by BAe as a result of their

3-5

engineering work. These evaluations were reported as a series of Technical Appraisals
attached to the main integrity report and their results incorporated into the risk
assessment.

The integrity appraisal was conducted by a team with specialist knowledge of the design
of the equipment and to maintain the fidelity of the appraisal they reported to an
independent authority which consisted of two senior engineers, one from GAv and the other
from BAe.

5.0 RESULTS OF THE SOFTWARE APPRAISAL

The integrity appraisal had to deal with both hardware and software. Since this paper is
concerned only with software, it is appropriate to consider only the software appraisal.

The objective of the software appraisal was to assess whether a software defect existed
which, if activated, would lead to a safety critical event.

The software defects which may lead to a safety critical loss of control may arise from
errors in the following:-

Design Philosophy

Requirements Definition

Structure

Frames

Modules

Hardware/Software Integration

Support Software

Configuration Production Control

The appraisal was designed to assess each error source in a variety of ways and the
primary scope of each major activity is shown in Figure 5-1.

\ WTEGRTPf
\ ACrrVTTY

ERROR \
SOURCE \

1 1

OeSHJN
PHILOSOPHY ^ y

RBURDCNTS
DEFMTION j y

STRUCTURE y y y •/ • ■y

FRAMES s/ y V

MODULES J y

CaMmB4.[TY
j y ■j y

SUPPORT
SOFTWARE •y

OOWTGUBATIOK
COMTHOl j ■y y

Figure 5-1 Prime Method of Error Detection

The results of the GAv appraisals are given in turn.

5 .1 Results of the system FMEA.

An extensive series of checks at system level were completed covering for example, the
following:-

3-6

i) Executive and Synchronisation.

ii) BITE - 1st line
Pre-flight
Failure identification
Failure logic

iii) Control Functions - Control Laws
Signal flow
Scheduling
Transport delays
Data management
Voter/Monitors

iv) Workspace Usage

v) Storage and Run Time.

Further, a series of special case appraisals were completed, examples of which are as
follows:-

i) One Frame not executed.

ii) Lane identify failures

iii) Sensor Tolerance analysis

iv) Asychronous operation.

The points which were considered to have a potential impact on system performance were
assessed jointly by BAe and GAv. The result was that the deviations identified, either
had no safety critical implications or were considered to present an insignificant safety
critical risk.

5.2 Results of the Frame Tests

The Frame Tests checked for example:

i) That all the modules linked together in a Frame were defined by the BSD (Software
Structure Document).

ii) The arithmetic accuracy of the Frame outputs.

iii) The operation of the failure logic was as defined in the SRD.

iv) The data module contained all the correct variables and constants.

The Frame Test deviations which had a potential impact on system performance were jointly
assessed by BAe and GAv. None of the deviations had safety critical implications, or
were considered to present a significant safety critical risk.

5.3 Results of Module Tests and Technical Checks.

The module tests checked for example that:-

i) The module code performs the function specified.

ii) The module is arithmetically correct.

iii) The module linkage is correct.

iv) The data module contained all the correct variables and constants.

These tests were complemented by a series of technical checks examples of which are as
follows:-

i) The module requirement was checked for compatibility against the design
specification.

ii) Conformity to the SRD, SSD and other manuals

iii) Module code is equivalent to specification language statements.

The thoroughness of these processes was assessed, and the results showed that a number of
documentation errors and design deviations existed. However, no errors were found in the
coded program and none of the deviations were considered to present a safety critical
r i sk.

5.4. Results of the Hardware-Software Compatibility Test

An FCC 'Software ATP' was completed in order to test the compatibility of the FCC
processor and I/O controller with the Flight Resident software. Although the tests

3-7

checked for example, the control functions and the voter/monitors, no significant
deviations were found.

5.5 Results of Support Software Appraisal

For the support software, a series of checks and tests were carried out to ensure the
compatibility of the host processor software, with particular reference to the following
programs:-

i) Macro Expander

ii) Assembler

iii) Simulator

iv) PROM Tape Copier

The results showed that the programs were mature and that all the deviations were due to
the variations of the host machines used by the project and therefore the risk of a
safety critical defect arising from the support software was considered to be
insignificant.

5.6 Results of Software Production Procedures Appraisal

An appraisal of the software documentation and procedures was completed for the
following:-

i) Production Methods

ii) Change Request Activity

iii) Module Documentation

The results of the appraisal showed that although a number of deviations were
identified, the safety critical implications were considered to be insignificant.

5.7 Results of Configuration Control Appraisal

The configuration control appraisal checked for example that:-

i) Progress cards. Build Standards, Change Requests and other processes used in
producing the various software issues had been completed.

ii) All queries have been answered and all necessary Change Requests had been entered
on the Progress Cards and Build Standards.

This appraisal was carried out, for all Change Requests raised during the Jaguar FBW
programme.

Although a number of documentation errors were identified, these were generally
associated with documentation cross referencing and no errors have been identified in the
coding.

5.8 Results of the BAe Queries Appraisal

The BAe Queries Procedure was established in order that points arising as a result of the
Warton Rig Test Programme could be formally linked to the overall development programme
for the software.

In order to check this procedure both GAv and BAe formally checked the response to each
Query and no errors were identified which were considered to present a significant safety
critical risk.

5.9 Conclusions from Software Appraisal

The software appraisal assessed its design, definition, implementation, test support and
configuration control but the joint survey did not identify any defect which would
result in a safety critical condition.

However, in order to give an indication of the sources and types of software defect
identified during the project, an analysis of the module change requests was completed^

These have been broken down into the following categories:-

Design 44%
FMEA 24%
Rig errors 12%
Code errors 7%
Not required 13%

3-8

This shows that the most common reason for a change request was modification to the
design requirements specification.

Further, the total distribution of all CRs clearly indicated that the overall level of
activity declined after June 1979 and that the software was mature at first flight.

The appraisal also highlighted the following:-

Design

The number and distribution of the CRs, raised as the result of design or similar
errors, followed a predictable pattern, in that the peaks corresponded to each major
issue of the assembled program.

Code

The small percentage of coding errors indicate the thoroughness of the module and
program testing carried out during and after module assembly. It is also significant
that the majority of the errors were detected before the first development assembly.
Only three coding errors were found after the first assembly had been issued and the
program has been free of code errors since June 1980.

Module FMEA

The number of CRs raised as the result of the module technical check FMEA indicates
that the procedure is a significant method of error detection.

Rig Test Results

The testing of the modules as part of the assembly was carried out on the Warton Rig
and the resultant CRs from this work indicate the necessity of such equipment. The
significant volume of error detection occurred after the first assembly was tested on
the Rig.

However, it was not possible to draw any significant quantitative evidence that the
defect rate of the software was compatible with a safety critical risk of 1 x 10"'^ per
flight hour.

The final judgment on the software was therefore, that it had been audited by a variety of
different methods encompassing its performance, construction and code and no safety
critical defect had been identified. Therefore, it was concluded that the software was
sufficiently safe to permit flight trials to commence.

6.0 METHODS OF PROVIDING FAULT TOLERANT SOFTWARE

6.1 Basic Approach to Fault Tolerant Software

Any fault tolerant system be it hardware or software must contain the following
elements;-

a) A method of detecting a failure.

b) A method to determine which channel of the system has in fact failed.

c) An alternative channel which can take over the operation of the system until such
time as the failed channel can be repaired.

In hardware, the usual approach to fault tolerance is to provide a number of redundant
channels. In this case, errors are detected by a comparison between the outputs of the
'N' identical channels and any channel which differs from the average of the outputs is
adjudged to be the failed channel. This channel is then isolated and the remaining
channels continue to operate at a lower level of integrity.

The major problem with software is that this basic method is unsuitable. This is because
the basic concept of hardware redundancy relies upon spatially separating the channels so
that the probability of a failure in one channel causing further failures in the other
channels is extremely low. Since a software fault is essentially a latent fault it
exists in all identical pieces of software and will be triggered by a combination of
input data and the internal state of the program.

Thus, if all channels of a high integrity system contain identical software, then if the
systems are synchronised (as is necessary for the hardware monitoring technique to work),
then all of the channels will experience a simultaneous software failure.

From this it follows that an alternative method must be followed to achieve fault
tolerant software.

The most obvious method of providing fault tolerance is then to provide alternative
versions of the program. This method requires a different version of the program for
each channel and since a high integrity system requires at least three channels there
must be at least three versions of the program produced.

3-9

The difficulty of a single programming team providing these alternative versions of a
program has led to the concept of independent programming teams. This means that for the
simple triplex case three independent programming teams are required.

An alternative approach is the error recovery block technique first proposed by Horning
et al in 1974. ("A Program Structure for Error Detection and Recovery". Lecture Notes
in Computer Science 16, Ed. E Gelenbe and C Kaiser, Springer-Verlag, Berlin, 1974). This
method establishes a series of recovery points inside the program. Upon detection of a
failure, the program automatically returns to the nearest recovery point and executes an
alternative version from that point.

To detect a failure an acceptance test is associated with each recovery block and the
algorithm for the error recovery block scheme is:-

ENSURE Acceptance Test
BY Primary Module
ELSEBY Alternate Module 1
ELSEBY Alternate Module 2

ELSEBY Alternate Module n
ELSE error

It will be seen that the recovery block method is a more formal method of 'N' version
programming applied to modules of a program rather than to the whole program. As such it
still requires a number of independent programming teams and the problems of establishing
and controlling such teams remain.

One of the characteristics of the error recovery block method is that the various alter-
nates provide standby redundancy and are only invoked in the event of the primary module
failing the acceptance test. This minimises the execution time during the normal
operation of the program but a failure may cause the program to stop operation until the
system has recovered. While this is acceptable for many systems, for such systems as
flight control it is necessary for the system to continue operation.

6.2 The Dissimilar Software Approach

As was discussed above, fault tolerance requires the provision of dissimilar software.
This approach was adopted for the A310 Slats and Flaps system and this is discussed in
more detail below.

Secondary flight control systems such as spoilers/airbrakes, automatic trim, slats and
flaps and even some primary functions such as yaw damping, have throughput requirements
which are much less onerous than primary flight control. Computer units for these
applications are capable of being implemented using any of a number of 8 and 16 bit
microprocessors.

These systems, though relatively undemanding in computing power, nevertheless have high
integrity requirements.

Failure survival constraints are imposed upon the electronic control system since there
are no mechanical links from the pilot's controls to the surfaces, i.e. it is a
fly-by-wire system. The safety constraints are defined by probabilities for various
occurrences, including:

1) Inadvertent deployment of the slats or flaps must have a probability of less than
10"^ per flight hour.

2) Slats or flaps no longer operating and no warning given to the pilot, must have a
probability of less than 10"^ per flight hour.

3) Slats not operable must have a probability less than 10"^ per flight hour.

These constraints relate to the entire slat and flap operating systems and include the
electronic, mechanical and hydraulic components. Hence the requirement for safe
operation of the SFCC has to be better than the above figures.

In considering candidate system architectures to achieve the stated requirements, one of
the major considerations was the comparative simplicity of the task in relation to other
flight control tasks. Operation of the slats and flaps as performed by the software, is
mainly a sequence of logical expressions rather than arithmetic expressions and complex
filters as would be found in typical autopilots and autostabilisers. This results in
throughput and instruction set requirements that can be readily achieved by commercially
available microprocessors. The use of microprocessors allows a significant cost saving
when compared to such a system using a purpose build processor. However, the
disadvantage of microprocessors in high integrity applications is that their internal
workings are not visible. Thus the failure mechanisms of such processors cannot be
predicted .

Another major factor in the choice of an architecture is the views of the certification

3-10

authorities. Lack of experience in the industry and the difficulty in assessing the
integrity of software has led to recommendations from the authorities that consideration
be given to:

a) the use of monitoring, limiting or other provisions which are independent of the
digital computation, to reduce the effect of failure within it.

b) the use of dissimilar elements in critical portions of the equipments, particularly
where analysis may be difficult or inconclusive (e.g. the processor).

The third major factor is the failure su
on the Jaguar fly-by-wire aircraft, it i
a failure. It is also necessary to cont
the necessity to identify where the fail
the A310 Slats and Flap System it is'suf
On recognition of the failure, there'are
the surfaces in their current position,
landing, or indeed, an immediate return
been taking off, it does not prevent the
aircraft. This necessity for fail-safe
requirements as outlined above, item 3 (
being more an availability than a safety

rvival requirements. In a control
s not enough just to identify that
inue to work correctly after the f
ure is and to isolate or absorb it
ficient to know that there has bee
brakes in the wings which are ope
Although this may mean a slatless

to the airport from which the airc
continued safe flight and landing

capability is reflected in the saf
slats not operable: probability <1
constraint.

system such as
there has been

ailure. Hence
However , for

n a failure,
rated to freeze
or flapless

raft has just
of the

sty
0~* per hour)

It was concluded, therefore, that two different microprocessors should be used in
parallel to perform the slat and flat operating task. This makes the probability of a
common internal failure or design error within the microprocessors extremely unlikely.
It also ensures dissimilarity of the software at the code level.

Although this was felt to increase the level of confidence that a common coding error
would be minimal, it does not resolve the problem of common software structure or
algorithmic design errors. Hence it was decided to perform two complete software
development tasks, one for each microprocessor, with only the system requirements as
produced by the customer being common to the two.

6.2.1. System Description

A schematic diagram of the computer architecture is shown in Figure 4.6.
are required in order to meet the availability requirements.

Two computers

Figure 6.1 Computer Architecture Schematic

Internally, each of the computers contains two different microprocessors. A computer
will only drive its hydraulic motor if both microprocessors agree, otherwise the motor
output is locked leaving the other computer to drive the system.

If a computer fails, this will be detected by the different outputs from microprocessors
1 and 2 and the computer will then isolate itself.

If there is an uncommanded movement of the output e.g. a torque shaft breaks, then both
computers will detect the incorrect deployment and will operate the wing brakes. This
freezes the flaps/slats in their current position.

6.2.2 Software Development for Dissimilar Redundancy

A separate Software Requirements Document (SRD) is produced for each lane. Having
produced the SRD, the software development procedure then follows the normal path, in

3-11

each lane, of top-down analysis to produce a modular structure and to design and generate
the code for each module.

At this stage, instead of embarking on module testing, the approach that has been taken
is to assemble the software for each lane and then to perform hardware/software
integration testing. It is felt that, since the lanes must agree to provide the
computing function they each provide for the other the most stringent test environment.
This test philosophy is amplified in section 6.2.4.

To avoid the possibility of design errors being introduced by a common assembly fault,
two different host computer facilities are used to assemble code for the two processors.

The choice of microprocessors from two different suppliers further reduces the risk of
the associated assembler packages having common errors.

Each microprocessor memory is loaded from the associated development system in a
dedicated format. These formats, which are different, are read by the PROM programmer
which is independently checked for correct function.

The two software development activities are kept completely separate, the two programs
eventually being proved by integration with the hardware.

A brief summary of the software development process is shown in Figure 6.2.

SYSTEM SPtC

Figure 6.2 Dissimilar Software Development

6.2.3. Design Methodology

One disadvantage of trying to verify software by testing is that it is extremely
difficult to prove that the software is free from design errors. In a similar redundant
system the probability of an undetected software design error adversely affecting the
system safety must be compatible with the integrity objective.

From the Airbus Industrie A310 SFCC, the software has been prepared twice, using two
different software development facilities. The flight resident software suites thus
produced are executed by different, asynchronously operated microprocessors. The outputs
of the two microprocessors are continuously compared and any difference greater than a
defined threshold causes the system to disconnect after a preset time delay with all
output drives being removed.

A design error in one of the two dissimilar lanes can never produce a hazardous output
from the system.

Design errors in both dissimilar lanes could only produce a hazardous output if their
resultant effect was identical and occurred within the pre-set time delay of the
cross-lane comparison.

The benefits of dissimilarity are clear. The precautions that have been taken to ensure
that dissimilarity is maintained are listed below.

Software for each of the two processors is prepared by two different groups.

The processors are different for the two lanes - are made by different manufacturers

3-12

and have different instruction sets.

The two suites of software are prepared and assembled using two different software
facilities - also made by different manufacturers.

The processors obey instructions which have different object codes and are located in
differently mapped program stores.

The data used by the processors is located in data stores which are also differently
mapped.

The processors have separate clocks and operate asynchronously so that there is no
requirement for frame synchronisation to link them together.

The program store for each processor is loaded using a PROM tape, the format of which
is different for the two lanes, since each is generated by a different support
system.

Discrete words exchanged cross-lane for monitoring have their bit pattern deliberately
shifted. This avoids the possibility of a common error when comparing the two lane
outputs in each lane.

With these precautions it is unlikely that the same software design error can occur in
both lanes to produce the same hazardous and undetected output simultaneously from both
lanes.

6.2.4 Software Verification

In a similar redundant system where software is common to all lanes, a single software
error could cause loss of the total system. A software verification procedure has
therefore been developed which reduces the software risk to acceptable proportions.

Several of the techniques thus developed incur no significant cost penalty and can be
applied directly to the dissimilar approach.

With other techniques such as module testing, the extent to which they are applied
depends on the complexity of the module function and the consequences of not detecting
errors. These techniques have to be critically reviewed and applied as necessary to
achieve the required level of integrity.

Testing
The duplication of software is considered to provide sufficient integrity to meet the
safety requirements of a system in which availability is not a predominant requirement.

Nevertheless, it was felt that to provide the required availability, certain module tests
needed to be performed. The modules are divided into three categories:-

a) critical modules which will be subjected to full testing e.g. those that drive system
outputs or monitor for asymmetrical deployment or runaways.

b) modules that will require supplementary testing because the software/hardware
integration tests do not accurately check certain thresholds.

c) modules requiring no testing other than that performed during hardware/software
integration.

6.3 An Alternative Approach to Fault Tolerant Software

It has been seen that fault tolerant software requires the development of alternative
versions of the flight program. The A310 system follows this pattern and it has been
seen that two independent software teams are needed.

An alternative to this approach was proposed by Shepherd while at the Cranfield
Institute of Technology.

This approach is currently being examined by C.I.T. and GEC Avionics under contract from
the Royal Aircraft Establishment.

Essentially, the method follows the general concept of error recovery blocks but
evaluates the alternate block concurrently with the primary block.

The method depends upon two techniques:

a) The concept of Temporal Separation of Software Channels.

b) The concept of deriving an alternate version of the program from the primary
version.

These techniques are discussed below.

6.3.1 Temporal Separation

The concept of temporal separation is essentially based upon the fact that while spatial

3-13

separation prevents the proliferation of hardware faults, software faults are time
dependent. Thus, to ensure that a software fault does not affect all channels
simultaneously, it is necessary to ensure that each channel does not process identical
data. The method of ensuring this depends upon the fact that for a real time system such
as flight control a high iteration rate is used. The method is then to use inputs from
different time periods for each of the channels.

To illustrate this consider a triplex system. Assume that each channel has program
version A as its software and that the total system has reached iteration n.

Then let An represent program A on its nth iteration, An-1 program A on its n-ith
iteration etcetera.

Then let the distribution of programs be as follows:-

Channel No. Program State
1 An
2 An-1
3 An-2

The system operates on channels 2 and 3. If An can be checked for correctness then on
the next iteration this becomes An-1 and since it has been established that the program
operates correctly with this input data (on the previous iteration), it is safe to
control the system using this software and input data.

To decide whether An is correct it is necessary to provide a method of checking An. This
is done by generating an alternate version of the program using the methods described
below.

For the moment however, assume that an alternate program B exists. Then using the same
notation as given above the basic system implementation is given by:-

Channel No. Primary Program Alternate
1 An Bn
2 An-1 Bn-1
3 An-2 Bn-2

If then An is compared with Bn and is within tolerance then the system is operating
correctly and the data can be processed to control the system using channels 2 and 3.

If An and Bn outputs disagree by more than a set tolerance then a Lagrangian
Extrapolation of previous outputs can be made.

Thus from An-3, An-2 and An-1 a value An(est) is obtained. Similarly, a value Bn(est)
is found.

The following comparisons are then made:-

An - An(est) = El
An - Bn(est) = E2
Bn - An(est) = E3
Bn - Bn(est) = E4

If then (El + E2)/2 < (E3 - E4)/2 then program A is correct else program B is correct.

In practice an additional check is carried out to ensure that the error values of the
smaller of the above equations are below a tolerance level.

This method is valid for such systems as flight control since as was mentioned above a
high iteration rate is used and the difference between successive outputs is small.
Thus, it is possible to extrapolate to obtain the estimates required.

In practice, the following implementation was carried out:-

Channel No. Main Program Alternate

1 An
2 An-1
3 An-2

and a state table established showing previous states.

Then if the new value of Bn-2 is different from the previous value of Bn-1 a hardware
fault must exist in channel 1. Similar considerations apply to channels 2 and 3. Thus
the method can be used to detect both hardware and software failures.

For this method to function it is of course necessary to construct an alternate version
of the program. The method proposed to do this is described below.

6.3.2. A Method of Generating an Alternate Version of a Program

In considering software monitoring, it is necessary to consider the four types of
operation encountered in a program. These are:-

Bn- -2
Bn
Bn- -1

3-14

a) Arithmetic operations
b) Logical operations
c) Decision and branch operations
d) Input/output operations (including interrupts).

Each of these types of operation are considered in turn.

6.3.2.1 Arithmetic operations range from the simple assignment operation to very-
complex functions. It is obviously necessary to consider this total range of operations.

Assume therefore, that the program contains a series of arithmetic modules and it is
required to check these modules.

Let the output from a program module A be a function of variables Bl, B2,, Bm.

Then at sample n assume

An = f(Binf B2n •..-, Bmn) is correct.

At sample n+1

An+1 = f(Bin+]_, , Bmn+l)

An+i differs from An by a value A An+i and this change is due to the change in the values
of Bin to Bin+l of ABin+i.

Then

An + A An+i = f((Bin + ABin+i), (B2n + 'iB2n+l) •• (Bmn + ^Bmn+i))

If now a relationship can be found such that

f((Bin, ABin+i), .. (Bmn + A Bmn+l > ' = f'Bin, AB2n..Bn,n) + <3

(Bin, ABin+i, B2nr AB2n+l ■• Bmn, A Bmn+l)

Then

AAn+i = g(Bin, ABin+i , Bmn, '^ Bmn+l)

But A An+l = An+l - An

Thus, if the function g is obtainable, two measures of An+i are available and if An is
correct then the correctness of An+l can be established.

The problem must therefore be considered in two parts:-

a) For a given function f, does a derived function g obeying the above requirements
exist?

b) If such a function g exists, is it independent of f, (i.e. if f fails does g
survive)?

It is obvious that for many of the commonly used functions in realtime systems, it is
possible to derive such a g function and to show that they are independent.

6.3.2.2 Logical Operations

In addition to arithmetic operations it is necesary to consider logical operations of the
form:

A : = B + C

A : = B.C

where + = OR

AND

In general with these types of equations, it is easy to produce an alternative
algorithm.

De Morgans' theoram states that

A.B = A + B

A + B = A.B
Thus the above functions can be expressed as:-

A = B + C = B + C - A.B

A = B.C = B.C = B + C

3-15

In general, as is common in logic design any Boolean function can be expressed in terms
of either NOR or NAND operations and thus there are always two alternative expressions
for logical operations. Thus the requirements for having different algorithms for the
main and check programmes are satisfied.

6.3.2.3 Decision and Branch Operations

These operations are typical of the form: BEGIN

If X = Y THEN BEGIN
MODULE A
END

ELSE BEGIN
MODULE B
END

END .

It will be seen that this type of operation is a combination of arithmetic and logical
operations and can be treated as such.

Thus, the next iteration of the loop is

If X+ &X = Y + AY THEN

This is modified to

BEGIN
IF X-Y<> AY- Ax THEN BEGIN

MODULE B
END

ELSE BEGIN
MODULE A

END
END.

It will be seen that the previous values are compared with the increments and the
opposite state (not equal instead of equal) to give the branch condition. Once again
therefore, different algorithms are used to check the main algorithm.

6.3.3 Results of Preliminary Study

In order to check the validity of the approach, software representing the short period
mode of an aircraft was developed and the techniques described above were applied.
Approximately 60,000 random faults were introduced for each of 3 different input signals
(which had random noise superimposed to ensure that realistic signals were used).

The results obtained were:-

Sine Test Triangle Test Sawtooth Test

No. of faults 61127
% Detected 100
% Errors corrected 83.9
Acceptable errors (1-15%) 16.0
Unacceptable errors 0.1

In practice the sinusoidal input is more nearly representative of the type of input used
in flight control.

It should be realised that no attempt was made to optimise iteration rates or tolerance
levels during this study and that therefore it is to be expected that even better results
can be obtained.

The results obtained to date however indicate that the proposed approach is valid and
that it is worth considering the concept further.

6.3.4 Estimates of Failure Probability

We now pass on to considering the probability of failure of the fault tolerant system. A
success/failure disagram of the fault tolerant software can be constructed as follows: -

62019 61063
100 100

82 76.5
17.9 24.2
0.1 0.1

3-16

pm

f— R

pm

ps

Path 1

Path 2

Path 3

Path 4

where R. pm the reliability of the main program

Upm - the unreliability of the main program

■'ps the reliability of the difference equation program

Upg = the unreliability of the difference equation program

Rpj, = the reliability of the check program used in the fault tolerance system

Upc ~ the unreliability of the check program.

Each of the paths shown in the diagram describes a particular situation in the fault
tolerant software.

Path'l reliability

Path 2 reliability

Path 3 reliability = Upn,*Ups*Rpc

Path 4 = Upin*Ups*Upc

Path 4 will result in a failure in the fault tolerant software.

"pm

Upm*I^ps

The probability of a software failure of a program is closely linked to the unreliability
of a program. We can say that

Psf ~ Psfmain *Psfsecondary *Pundetected error

For a typical piece of software

Pgf = 1 X 10"3/hour

for well tested programs.

Assuming that the main and secondary programs of the system are well tested, we can say
that

Pgf = 10~3 *io~3 *p undetected error

From the results obtained it is possible to assume that the probability of an undetected
error will be small. A rough estimate could be

^undetected error = 10-3/hour

and the probability of a software failure for the fault tolerant system suggested
becomes

Pgf = 10~9/hour

despite each section of the software having a probability of failure

= 10"3/hour.

Acknowledgement
Part of this work has been carried out with the support of the Procurement Executive, Ministry of Defence.

4-1

ROBUST CONTROL SYSTEM DESIGN

by

J. Ackermann
Director of DFVLR Institute for Flight System Dynamics

DFVLR Oberpfaffenhofen
8031 Wessling
W.-Germany

SUMMARY

The short period longitudinal mode
canards is unstable in subsonic fli
damped at supersonic speed. The con
acceptable pole locations according
for flying qualities. A fixed gain
paralleled gyros is designed, such
requirements in four typical flight
respect to gain reduction to one th
immediately after one or two gyro f
and redundancy management may be pe
cal level, which does not have to b
accelerometers or air data sensors
pressure is totally avoided in this
is necessary. The design for robust
flight conditions and sensor failur
parameter space design tool.

of an F 4-E with
ght and unsuffic
trol system has
to military spe

controller using
that the pole re
conditions are

ird. Thus nothin
ailures. Failure
rformed at a hig
e extremely fast
for angle of att
concept and no

ness with respec
es is performed

horizontal
iently
to provide
cifications
three

gion
robust with
g bad happens
detection

her hierarchi-
. The use of
ack or dynamic
gain scheduling
t to different
by a novel

I. INTRODUCTION

Redundancy management in control systems is usually viewed separately from the control
algorithm. The control system is designed under the assumption, that sensors do not fail.
Then redundancy management has to provide the required measurements with only very short
interruptions by failures of individual sensors. If. the plant is for example an unstable
aircraft, this means that failure detection is vital for stabilization, it has to operate
fast and this requirement is in conflict with the requirement of low probability of false
alarms.

In this paper a hierarchical system is proposed. Its basic level is a fixed gain control
system, which is designed such, that pole region requirements are robust with respect to
component failures. All more sophisticated tasks like failure detection and redundancy
management, plant parameter identification and controller parameter adaptation or gain
scheduling are assigned to higher levels, if they are required for best performance. The
higher levels processes more information and are operating in a slower time scale than
the basic level. Since the higher levels are not vital for stabilization they can make
their decisions without panic haste.

This paper deals with the design of the robust basic level control system. The particular
example is an F 4-E, which is destabilized by horizontal canards, see Fig. 1. Only the
short period longitudinal mode is considered, i.e. second order dynamics. The actuator is
modelled as a first order low pass with transfer function 14/(s + 14), its state variable
is 6 , the deviation of the elevator deflection from its trim position. 6 is not fed back,
because this would require an estimate of the trim position.

In a previous study [1], [2] measurement of normal acceleration N and pitch rate q is
assumed and the linearized state equations are written in sensor coordinates with the

T
state vector x

X = A x

[N

Ml

^21

z

b u

'12

'22

^]

M3

'23

Thus

b =

! 0 14

"^"
0

: 14 1

(1)

Data for the four typical flight conditions of Fig. 2 were taken from [3] and are given
in the appendix. The eigenvalue locations of the short period mode are given in table 1.

4-2

Table 1

FC MACH ALTITUDE OPEN LOOP SHORT PERIOD EIGENVALUES

1 0.5

2 0.85

3 0.9

4 1 .5

5000'

5000'

35000'

35000' -.87 ± j4.3

3.07 1 .23

4.90 1.78

1 .87 0.56

The aircraft is unstable in subsonic flight and unsufficiently damped in supersonic
flight, such that adequate handling properties must be provided by the control system.

Note that in stationary flight the elevator and canard are not used independently. The
commanded deflections are coupled as

6 = u ecom

6^ „ = -0.7u ccom

where the factor -0.7 was chosen for minimum drag. Thus the short period mode stabilization
is a single-input problem.

The required closed loop eigenvalue locations are given by military specifications for
flying qualities of piloted airplanes [4]. For the short period mode described by

2 2
s + 2C^^u^^s + u = 0 sp sp sp

the restricted range of damping ; and natural frequency oi is
sp sp

(2)

0-35 1 ?sp 1 1.3 (3)

'^a 1 "^sp 1 '^b

where u^ and Uj^ depend on the flight condition and are given in the appendix for the four

conditions considered here.

Fig. 3 shows the nominal region r., eq.[3) together with the open loop eigenvalues for a

subsonic flight condition j. Damping greater than one in eq.(3) corresponds to two real
eigenvalues. Eq.(3) would admit some real pairs of poles with one of them outside the
region r.. In the following no use is made of this possibility. For all real pairs

inside r. condition (3) is satisfied. We require, that the closed loop short period poles

of each flight condition j = 1, 2, 3, 4 are located in the respective region r..

The military specifications do not contain requirements for the location of additional
closed loop poles originating from actuator or feedback dynamics. Quick response is
essential for a fighter,therefore the non short period eigenvalues should not unnecessarily
slow the dynamic response. In order to keep them fast enough and separate from short period
eigenvalues an additional region to the left of r. is prescribed. The damping requirement

? ^0.35 is kept from eq.(3) and a natural frequency range '^u 1 '^ 1 "J , "J = 70 rad/sec

is chosen in order to maintain a bandwidth limitation below the first structural mode
frequency. The extended region is shown in Fig. 3.

The assumed type of sensor failure is that the nominal gain v = 1 is reduced to some
value 0 £ V < 1 and an additional bias or noise term is added at the sensor output. As far
as eigenvalue location is concerned, only the gain reduction to zero is important.

s
The objective of this paper is to design the basic level control system such that the
pole region requirements of Fig. 3 are robust with respect to changing flight condition
and sensor failures. A novel "5^-space" design technique [5] is applied in this design.
It will be reviewed briefly in the following paragraph. In application to the example it
is then shown, how robustness with respect to changing flight conditions can be achieved
by appropriate choice of k^, and k in an output feedback control law

u = - l\, \ 0] X (4)

For robustness with respect to sensor failures in [1], [2] a configuration with two gyros
and one accelerometer and dynamic feedback was studied. It showed the disadvantage of
using the accelerometer. Therefore here a different solution with three gyros and dynamic
feedback is given. For this solution the responses in C" for a pilot step input are given,
where

C" = (N^ + 12.43q)/C^ (5)

The stationary value C is used for normalization.

4-3

II POLE REGION ASSIGNMENT

The most essential aspect of 0<i-space design is pole region assignment. Other features
will be discussed later using the design example. If a tradeoff with other design re-
quirements has to be made it is not satisfactory to find one solution, for which all
eigenvalues are in their respective regions in s-plane, e.g. by pole placement or root
locus techniques. It is desirable to find all such solutions. This is achieved by mapping
the region r in s-plane into a region P_ in the parameter space 5^ of coefficients of the

desired characteristic polynomial first. Then P„ is mapped into a corresponding region

K„ in the parameter space of feedback gains. The first step only deals with properties

of polynomials

P(s) = PQ + p^s + ... + Pjj_^ s'^" + s'^

= [£^ 1] [1 s ... s"]^ (63

n
IT

i=l
IT (S - S^)

The problem is: Find the region Pj, in 5^ space such that £ 6 Pp if and only if s. G r for

i = 1, 2 ... n. The boundaries of P„ for a connected region T with two real axis inter-

sections at a, and a^ consists of three parts corresponding to the cases that a real eigen-

value crosses the boundary in s-plane at a. or at o^ or a complex conjugate pair crosses

the complex boundary. For the real values these boundaries in ^space are the n-1
dimensional hyperplanes P(Or) = 0 and P(On) = 0.

For the complex case

P(s) = [s - a - jo)) . (s - a + ju) . R(s)

= [s^ - 2as + a^ + a)^(a)] ■ R(s)
(7)

2
If for example the boundary u (a) is a circle with real center a and radius r, i.e.

(a -CT^]^ + oj^ = r^, then P(s) = [s^ - 2as + r^ + 2a^a - a^] R(s) . For a fixed .R(s) , ^

depends linearly on a, i.e. in S^ space a straight line segment from a point on

P(a,) = 0 (with a double root at a,) to a point on P(On) = 0 (with a double root at a^)

results. As the n-2 coefficients of R(s) vary, this straight line is moved and forms the
complex boundary in ^-space. For n = 3 this is illustrated by Fig. 4. If £ crosses the
plane containing the triangle ABC, then a real root crosses the unit circle at s = -1
and analogously for the triangle BCD and s = 1. If £ crosses the hyperbolic paraboloid,
which is formed by a family of straight lines, then a complex conjugate pair of eigen-

2
value crosses the unit circle. If lo (a) is a conic section

2 2 0) (a) = c + c.a + c,a (8) ^ ^ o 1 2

then the image for a fixed R(s) is a conic section instead of the straight line above.
The complex boundary may be defined piecewise as in Fig. 3.

The complex and the two real boundaries partition the 5^ space into regions distinguished
by the location of the eigenvalues relative to r.

In the second step a controller structure is assumed, e.g. state feedback

u = - k'^ X , k^ = [k^ k^ ... k^] (9)

and the region P_ is mapped into a region K„ in the controller parameter space <!^ with

coordinates k. , k^ ... k such that k e K„ if and only if £ e Py,. It was shown in [1],

that for state feedback, eq.(9), this is accomplished by an affine mapping

k"^- = [2^ 1] E (10)

where the pole assignment matrix E describing the plant is determined by a controllable
pair A, b as follows:

4-4

Let R [b A b A-^-l b]

[0 ... 0 1] R

Then
T

e^A"

(11)

By this affine mapping hyperplanes remain hyperplanes and conic sections remain conic
sections. Thus all principal properties of the regions can be studied in the canonical
parameter space i? . A system (A,b) is interpreted as an affine mapping from .J'-space to
^-space.

For each pair A., b., i.e. fo

the solution set is the inter

tation of such regions is eas
For higher system orders the
also for output feedback some
i.e. we are looking at a two

By eq.(IO) each fixed gain k.
is the ith column of E. These
by coefficients of a second o
along the boundary in s-plane
This tool will be applied to

r eac

secti

y for
desig
gain

dimen

impl
n-2

rder
to p

the a

h fli

on of

n =
n may
s are
siona

ies a
linea
facto
roduc
ircra

ght c

the

2 and
proc
fixe

1 cro

line
r equ
r of
e the
ft ex

onditi

region

possi
eed St
d. In
ss-sec

ar rel
ations
the ch
bound

ample

on, a

s K^.

ble
epwise
the ai
tion o

ations
can b

aracte
ary in
in the

t mapping E. results and differen

in^-space. Graphical represen

for n =
by fixi
rcraft e
f the th

hip k. =
e used t
ristic p
the pla
next se

3 by computer graphics,
ng n-2 gains in each step,
xample n = 3 and k, = 0,
ree-dimensional region K r'

where n. tE 1] Hi.
o express the two free gains
olynomial, which is varied
ne of the two free gains[2]
ction.

Ill ROBUSTNESS WITH RESPECT TO FLIGHT CONDITION

The first design objective will be to design an output feedback controller, eq.(4), which
meets the nominal pole region requirements at all four flight conditions.

The boundary for flight condition 2 is shown in Fig. 5. On a-b eigenvalues are on the
lower natural frequency boundary u = 3.5, on b-c they are on the damping 0.35 lines.

bp
At c-a real root boundary takes over: on c-d the actuator eigenvalue is at a = -70. On
d-e a real short period eigenvalue is at the upper natural frequency limit a = -12.6 and
for e-a the actuator eigenvalue is at a = -12.6. The condition for having no real real
root a = -3.5 is satisfied in the total region. This region R_Q„2 ■'■^ bounded by two
straight lines c-d and d-a resulting from real root conditions and by the two complex
boundary curves a-b and b-c. Note that the boundaries in s-plane are conic sections and
thus a-b and b-c are segments of conic section also.

The regions R 1 - R . for the other flight conditions were found by mapping the nomi nom4 '' / ri- &
eigenvalue constraints for each flight condition into the kj^ - k -plane. These four

regions have the intersection R shown in Fig. 6. Thus robustness with respect to ° nom °
changing flight conditions can be achieved by static output feedback of the accelerometer
and gyro signals. More precisely: All eigenvalues at all four flight conditions are in
their prescribed regions in s-plane if and only if the pair kj, , k is chosen in the
region R

As an example choose the design point Q^, i.e. kj, = -0.115, k

eigenvalues are given in table 2.

-0.8. The closed loop

Table 2

FC
Short period eigenvalues

damping natural frequency
Actuator eigenvalue

0.94

0.61

0.79

0.55

4.68

9.18

4.63

8.11

18.31

37.29

17.78

27.04

4-5

The selection of a design point in R is a tradeoff, in which the designer learns, which ° ^ nom ' °
requirements are conflicting. E.g. structural vibrations are most critical in flight
condition 2 (high speed, low altitude). They can be reduced by avoiding the vicinity of
the Oo = -70 boundary. Low damping is most critical at the supersonic flight condition 4.

Damping can be increased by avoiding the vicinity of the i,. = 0.35 boundary. Sluggish

responses in landing approach can be avoided by avoiding the vicinity of the a^ = -2.02

boundary. The a, = -7.23 boundary is only necessary in order to separate actuator and

short period poles, the design point may be chosen close to this boundary.

IV 'ROBUSTNESS WITH RESPECT TO SENSOR FAILURES

As far as stability is concerned, a failure of the accelerometer(gyro) is equivalent
to a reduction of k,, (k) from the nominal value to zero or some value in between.

Nz ^ q
Fig. 6 shows that the nominal region does not intersect the axes, thus in the assumed out-
put feedback structure it is not possible to maintain nominal specifications after their
failure,

Fig. 6 shows however that a considerable gain reduction inside R __ is admissible, if k^,

and k are reduced simultaneously. This can be achieved by replacing the accelerometer

measurement N by an estimate Si , which is produced by a filter from q. It is not necessary

that this is a true estimate, e.g. generated by an adaptive observer. It is sufficient,
that this is a constant filter connected to q such that the frequency response from u to
the filter output N is an approximation to the frequency response from u to N for an

z ^
average over the four flight conditions. Of course separation does not hold, i.e. we can
not take the same pair of feedback gains kj,, , k as in the case of accelerometer measure-

ment. However this consideration leads to a structure of the feedback system with a two
dimensional signal basis q and 15 , and a new exact determination of admissible regions in

the plane of the two feedback gains kj^^, k , see Fig. 7 , can be made.

Both transfer functions from u to N and to q have the same denominator, thus the filter

has to cancel approximately the zeros in the q-channel and to replace them by the averaged
zeros of the N channel. Table 3 shows the zeros and gain ratios of the transfer functions

at the four flight; conditions.

Table 3

Open Loop Zeros and Gain Ratio

PC MACH ALTITUDE q-ZERO Nz-ZEROS

-.542±j5 33

-.929±j9 12

-.392±j5 67

-.481±j8 05

-.586±j7 .04

V^Q

1 .5 SOOO' - .884

2 .85 5000' -1 .57

3 .9 35000' - .637

4 1 .5 35000' - .826

AVERAGED VALUES

.527

.536

.537

.577

.543

Fortunately the gain ratio is almost constant. The filter is then

0.543
s"' + 1 .172s + 49.9

(s + 0.983
10

s + 10 (12)

The term 10/(s+10) was included to make the filter realizable. The pole at s = -0.98
approximately cancels the q-zero and is therefore weakly controllable from u, i.e. the
corresponding closed loop pole will remain in the vicinity of -0.98. This however has
little effect on the C" step responses and is exempted from the pole region requirements.

Note that the corresponding idea to use the accelerometer only and to omit the gyro leads
to the inverse filter of eq.(12). Here the approximate cancellation occurs for a complex
pair in the vicinity of s = -0.586 ± j7.04, i.e. close to the imaginary axis and no
robustness with respect to changing flight condition can be achieved [1].

Fig. 8 shows the intersection of the admissible regions for the four flight conditions.
It is seen, that flight conditions 2 and 3 are the critical ones, in the accelerometer
feedback case flight conditions 1 and 4 were the most critical ones. However the two feed-
back gains have the same order of magnitude and the shape and extension of the admissible
region still admits a choice of k as shown in Fig. 8 , namely

4-6

k Nz -0.09

k -0.8
q •

(13)

such that the pole region requirements are satisfied for 2k/3, k/2 and k/3.

The failure detection logic in Fig. 7 decides as follows

a) Three gyros unfailed: g^

b) Gyro i failed: g. = 0

'3 "

1/2

1/3

Before the decision b) has been made, we have a case between k and 2k/3. If a second gyro
fails after decision b) has been made, we have a case between k and k/2. Only in the un-
likely case that a second gyro fails before the first failure has been detected, the gain
may be reduced to k/3. For the two typical cases k, 2k/3, k/2 and k/3 the eigenvalues
are given in the appendix. They meet all pole region requirements. Also the C" step
responses have been simulated for the open loop k^, = k = 0, Fig. 9, and for the closed
loop with k and k/2. Fig. 10. Fig. 11 shows the corresponding elevator deflections 6 .

V CONCLUSION

It has been demonstrated,
requirements for the cont
lead to a simple fault to
by gyros alone not only s
vantages for the control
can control the aircraft
course that nice stabiliz
different linearizations
condition for the stabili
tested in simulations. Al
is simple, i.e. does not
detection is not vital fo

that an integ
rol of the sho
lerant control
aves the cost
system. It is
at very differ
ation for seve
of a nonlinear
ty of the nonl
so for these s
require gain s
r stabilizatio

rated view of redundancy and
rt period mode of an unstable
system. It is interesting th

of additional accelerometers
also interesting that a const
ent flight conditions. Here i
ral typical stationary flight
system is only a necessary,

inear system. The nonlinear s
imulations it is an advantage
cheduling and different senso
n.

handling quality
fighter plane can

at the measurement
but even has ad-
ant controller
t must be noted of
conditions, i.e.

not a sufficient
ystem is usually
if the control system

r types and if failure

VI REFERENCES

[1] S.N. Franklin Design of a Robust Flight Control System,
MS Thesis, University of Illinois, Urbana-Champaign,
EE Dept., August 1979.

[2] S.N. Franklin, J. Ackermann
Robust Flight Control - A Design Example.
To be published.

[3] R.L. Berger, J.R. Hess and D.C. Anderson
Compatibility of Maneuver Load Control and Relaxed
Static Stability Applied to Military Aircraft.
AFFDL-TR-73-33, April 1973.

[4] Flying Qualities of Piloted Airplanes
MIL-F-8785B (ASG), 7 Aug. 1969.

[5] J. Ackermann Parameter Space Design of Robust Control Systems,
IEEE Transactions on Automatic Control, Oct. 1980.

VII ACKNOWLEDGEMENT

The author gratefully acknowledges the contributions of D. Kaesbauer und N. Franklin.

4-7

1.) Aerodynamic data for eq.(1)

FC 1

Mach 0.5

Altitude 5000'

a^^ - 0.9896

^12 17-41

a^3 96.15

32^ 0.2648

a^^ - 0.8512

a23 -11.39

b^ -97.78

■\

APPENDIX

J

FC 2 FC 3

0.85 0.9

5000' 3 5000'

- 1.702 - 0.667

50.72 18.11

263.5 84.34

0.2201 0.08201

- 1.418 - 0.6587

- 31.99 -10.81

-272.2 -85.09

FC 4

1 .5

35000'

- 0. ,5162

26. ,96

178, ,9

- 0, .6896

- 1 . ,225

-30, .38

-175.6

2.) Military specifications for flying qualities, see eq.(3)

Natural

frequency FC 1 FC 2 FC 3 FC 4

(rad/sec) ... ^

0) 2.02 3.50 2.19 3.29 a

a)jj • 7.23 12.6 7.86 11.8

3.) Closed-loop eigenvalues

2 2
Complex eigenvalues s + 2cws + lo are written (cij). The short period eigenvalues
are listed first.

Gain FC 1 FC 2 FC 3 FC 4

k
(0.
(0.

60, 4.30)
60, 17.2)

-0.87

(0.
(0.

68, 4.63)
,38, 26.4)

-1.63

(0.
(0.

.57, 4.38)
64, 16.2)

-0.62

(0.65, 5.34)
(0.45, 20.9)

-0.86

2k/3
(0.
(0.

57, 3.86)
71,15.3)

-0.86

(0.
(0.

,66, 4.41)
,47, 22.0)

-1 .67

(0.
(0.

,52, 3.95)
,74, 14.5)

-0.61

(0.60, 5.47)
(0.55, 17.6)

-0.87

k/2
(0.
(0.

,55, 3.47)
,77, 14.4)

-0.85

(0,
(0,

,64, 4.17)
.54, 19.6)

-1.72

(0.
(0.

.50, 3.59)

.80, 13.8)
-0.60

(0.56, 5.54)
(0.62, 1.57)

-0.88

k/3
(0.
(0.

,56, 2.86)
,84, 13.5)

-0.83

(0,
(0,

,61, 3.69)
.64, 17.0)

-1.84

(0.
(0,

.48, 3.05)

.87, 13.1)
-0.59

(0.48, 5.53)
(0.74, 13.9)

-0.90

0
open
loop

1 .23
- 3.07
-1 4
-10
- 0.98

1 .78
- 4.90
-1 4
-10
- 0.98 ■

0.56
- 1 .87
-14
-10
- 0.98

(0.20, 4.4)
-14
-10
- 0.98

4-8

Horizonta
canards (6)'

Elevator (5g)

q = 9/

Fig. 1 F4-E with canards

0.8 1.2 1.6

Mach Number

2.4

Fig. 2 Flight envelope and operating points [3]

4-9

in
a
o

•H
bo
0)
U

o
p<

o
O

M
O

»4
•H
3
ll>

OS

M
•H

'd <u
C 0) XrH .H
rt f-^ rO nJ <U P.

nJ d) X S
4-1 X) i-i -M O

o •H t/1 0 ^-^ U
o I—1 +-1 X) X^-'

Q. nJ IJ U C C O -o
^ •H ^ 0) 3 U XI

e to U -H o pq X) -H
o tn ^ U /3 CO
c •H -H -> oj tH
X + u 4-1 a u o

rH i+H o m /-N^
o ^ ■P <D -H < 1/1 0)
p. tn •H O 60 (D fH ,-^

<NI d o o m -H rt X
<u &, D !-i a> !H P< f-i
,c 0) ^ 0) ni
+J + <U JS (U MX) O X)

M-l ifl 4-1 4-1 tfl 3 rH 3
O ^^ m -H o o o

fx. d -H <u fH ^ ^ ja
<A •H X) +-> (-1
o + >v-H 4-1 <U 4-1 ^ (U .-H W 0 O fli o

■ u o !H c c x: o xo
M p. nJ o -H 4-1 (H ^ (1

00
•H
(It

■Nz

-9,30 -9.25 -0.20 -0.15 -9.19 -9.95 0.

I t I I t I I I 1 I I I I I I I I I t I 1 I t I I I I I

a2=-12.6

l<N2
o

0.25 -020 -0.15 -0.10 -0.05 -0.00
■i 1 1— 1 1 -0.0

^^ = 0.35

Oi = -7.23

fa,=-2.02

-- -0.5

■—3

kq

-1.0

- -1.5

■2.0

Fig. 5 Admissible region for flight condition 2
Fig. 6 Intersection of admissible regions for

flight conditions 1 through 4

W"i rii m * I

4-11

Pilot
 1
input s+ 6

Fail ure

detection

1

r

.
''

FA -E

qi
91

92 n ^ • q2 , ' q
T

qs _._J
93

Nz c /o s2 + 1.172 s + /.9.9
(. 5 + 0.98) (s + 10)

Fig. 7 Robust flight control system with 3 gyros

■0.1
—y-

kN2

(J02 = 3.5

Fig. 8 Admissible region for control system configuration of Fig. 7

FCl

/

^ ̂

3s

FC2

/

^^ /

0 1 : 2 3

FC3

/

/^'

/

2 3s
Fig. 9 C" step responses of the open loop

FC/.

■

1
D

*■

i ! 3

FCl

^^]^^^^__

/

FC3

f^\

1s °0
2

FC 2

^^^

I '

3s

FC4

/ ^

3s 3 s r.

Fig. 10 C" step responses of the closed loop for k and k/2
(k corresponds to the curve with the steeper initial rise)

0.06

0.06

FCl

_

V

0.06

0

Q06

■0.06

3s

FC3

V"
0 1 I I 3s

•0.06

0.06

FC2

^-^==^°^

V^

4^

3s

-0.06

Fig. 11 Elevator deflections 6 for k and k/2

FC^

W-^^

3s

5-1

RELIABILITY MODELING OF FAULT-TOLERANT COMPUTER BASED SYSTEMS

Salvatore J. Bavuso
NASA Langley Research Center

Mail Stop 130
Hampton, Virginia 23665-5225

USA

SUMMARY

Digital fault-tolerant computer-based systems are on the verge of becoming commonplace in military
and commercial avionics. These systems hold the promise of Increased availability, reliability, and
maintainability over conventional analog-based systems through the application of replicated digital
computers arranged in fault-tolerant configurations. Three tightly coupled factors of paramount
importance, ultimately determining the viability of these systems, are reliability, safety, and
profitability. Reliability, the major driver, affects virtually every aspect of design, packaging, and
field operations and eventually produces profit for commercial applications or to increased national
security for military uses.

The antithesis of promise for the digital computer Is, however, the Achilles' heel of the
reliability engineer. The utilization of digital computer systems makes the task of producing credible
reliability assessment a formidable one. The root of the problem is embodied In the very essence that
makes the digital computer such an outstanding device for a host of applications, namely its adaptability
to changing requirements, computational power, and ability to test Itself efficiently. It is the intent
of this paper to address the nuances of modeling the reliability of systems with large state sizes, in
the "Markov" sense, which result from systems that are based on replicated redundant hardware and to
discuss the modeling of numerous factors which can reduce reliability without concomitant depletion of
spare hardware. The diminishing factors are captured by the inclusion of "coverage" parameters that
capture in probabilistic measures the effectiveness of system handling of faults. Advanced coverage
(fault-handling) models are described and methods of acquiring and measuring parameters for these models
are delineated. Some recently measured latent-fault data are also presented.

1 . INTRODUCTION

The development of two novel methodologies for the reliability assessment of fault-tolerant digital
computer-based systems Is reported In this paper: Computer-Alded Reliability Estimation III and Gate
Logic Software Simulation. Both technologies were developed to mitigate a serious weakness in the design
and evaluation process of ultrareliable digital systems. The weak link is the unavailability of a
sufficiently powerful modeling technique for comparing the stochastic attributes of one system against
others. Some of the more interesting attributes are reliability, system survival, safety, and mission
success.

A long-term goal of the NASA Langley Research Center Is the development of this tool. The
technology development process is shown in figure 1 . Historically, our interest in this subject
commenced circa 1971. At that time, two math models were identified as having potential for filling the
assessment gap. Figure 1 shows those models as CARE, Computer Aided Reliability Estimation, a computer
program generated at NASA's Jet Propulsion Laboratory for application to long-lived, space borne computer
systems; and TASRA, Tabular System Reliability Analysis, a computer program due to Battelle Memorial
Laboratories for application to the F-111 Pitch Flight Control System (refs. 1 and 2).

The CARE computer program is a very powerful reliability assessment capability for fault-tolerant
system concepts that existed In the late 1960's. A major innovation in reliability modeling In CARE was
the incorporation of the stochastic concept of coverage due to Roth et al. (ref. 3). Coverage, defined
as the conditional probability that a proper recovery occurs if a fault exists, was shown by Bouriclus et
al. to be a significant factor for achieving high reliability in modular replacement systems (ref. 4).
Prior to this consideration, reliability analyses omitted the coverage parameter entirely which caused
math models to assume a unity probability of system recovery given a fault occurrence, thereby forcing
the reliability predictions to be nonoonservative and hence, inaccurate. Although powerful and
Innovative, the CARE math model suffers from two major deficiencies, its inflexibility to model the
emerging multiprocessor-based systems and the lack of a model for computing the coverage parameter.

The TASRA computer program, in contrast to CARE, utilizes the popular "Markov" analysis method which
allows a very flexible modeling technique but lacks the vital coverage model as well.

Based on these findings, NASA Langley participated in the codevelopment of CARE II with the Raytheon
Company (refs. 5 and 6). The primary objective in creating CARE II was to develop a coverage model to
compute coverage for CARE. Figure 2 presents the coverage math model and delineates the factors
comprising the coverage computation. Although the CARE II model represents a quantum leap in coverage
modeling, CARE II still retains the architectural-description inflexibility of the original CARE system.

A gestation period ensued following the CARE II development that Involved Langley in numerous
studies, some of which are depicted in figure 1 as square blocks, and the codevelopment of two new
reliability assessment methodologies, i.e., CAST (Combined Analytic Simulative Technique) and CARSRA
(Computer-Aided Redundant System Reliability Analysis) . The coverage impact study determined upper and
lower bound values of coverage for a fault-tolerant triplex flight control computer system utilizing
state of the art hardware (ref. 7). The CAST study made two important contributions to our program at
Langley: it emphasized the potential importance of transient modeling in reliability predictions, and it
Introduced the notion of combining an analytical approach with computer simulation (ref. 8). By

5-2

TRANSIENT
MODELS

SOFTWARE
RELIABILITY

STUDIES

PRESENT

FLIGHT CONTROL
COMPUTER ASSESSMENT

• FLIGHT CONTROL SYSTEM ASSESSMENT

• TRANSIENT-FAULT MODELING

• SOFTWARE-ERROR AND REDUNDANCY MODELING

Figure 1.- Technological development leading to CARE III.

C (i,

WHERE:

= P. P
I sx

• C
X

• T

•T'

j-1 P.' //
0 0

g,(T >hj(T' JT.Jr;(T,T')clTdT'
SX7 I

• P
SX

^sx
• Pj

• P.

• h

• r

•g

= COVERAGE TERM

= DETECTION TIME

= ISOLATION TIME

= DEFECTIVE SPARE DETECTION PROBABILITY

= SPARE UNIT TEST TIME

= NGN-COMPETITIVE DETECTION PROBABILITY

= ISOLATION PROBABILITY ASSOCIATED WITH P.
I

= ISOLATION RATE

= RECOVERY PROBABILITY

= COMPETITIVE DETECTION RATE

Figure 2.- CARE II coverage model,

partitioning the modeling of ultrareliable systems in this latter manner, an otherwise intractable
problem, using either approach in toto now becomes workable. The CAST concept has become the mainstay of
our approach to reliability assessment since the completion of the CAST study, circa 1974.

CARSRA was a spin-off from a Boeing Company study on the design of an Airborne Advanced
Reconfigurable Computer System (ARCS) (ref. 9). The development and application of CARSRA was our first
comprehensive involvement with the assessment of complicated aircraft flight control systems. The
complexity of flight control systems gave rise to the creation of CARSRA in two important areas. Since
CARSRA utilizes the Markov approach, a state reduction technique was required, and it became clear that
tne assessment tecnnique must uioclel stage dependencies in order to assess a variety of system
configurations which constitute continued mission success. The most familiar example of the application
is system survival. In a redundant fault-tolerant system, there are many system configurations (arising
out of system reconfigurations in response to module failures) which will effect the proper system

5-3

output; however, there are other system configurations that may be of interest In addition to system
survival. Boeing, In the ARCS study, defined the term "functional readiness." It is expressed as a
time-dependent probability and Is applied to missions containing critical subtasks which will either be
performed or not be performed, depending on the operational redundancy level at the time of demand.
Boeing cites, as an example, an aircraft automatic landing function for which a certain level of hardware
redundancy is required before a landing may be initiated In poor visibility and weather conditions.
CARSRA.also benefited from its predecessors by incorporating a multicoverage parameter capability and an
electrical transient modeling capability.

Transient modeling proceeded in two directions: the stochastic estimation of intermittent failures
of computer piece-parts and the modeling of the effects of Induced analog transients on digital circuitry
(refs. 10 and 11). The latter study is ongoing work that relates an analog transient source with a
digital system's activity. The form of this relationship will be a stochastic model for input to a
system reliability assessment model.

Software reliability studies are an ongoing activity at Langley. The most recent completed study
suggests the possibility of estimating software reliability through testing. Although still in the
experimental stages, a methodology has been proposed that estimates probability of software error as a
function of execution time and test trials (ref. 12).

All of the activities depicted by figure 1 have culminated to form the basis for the development of
CARE III. CARE III was codeveloped by Langley and the Raytheon Company and cosponsored by the U.S. Air
Force Avionics Laboratory at Wright-Patterson Air Force Base (refs. 13, It, and 15). The salient
features of CARE III are summarized as follows:

• GENERAL-PURPOSE RELIABILITY ANALYSIS AND DESIGN TOOL FOR
FAULT-TOlfRANT SYSTEMS

• LARGE REDUCTION OF STATE SIZE

• FAULT-HANDLING MODEL BASED ON PROBABILISTIC DESCRIPTION
OF DETECTION. ISOLATION, AND RECOVERY MECHANISMS

• VARIETY OF FAULT AND ERROR MODELS (STATIONARY AND NON-
STATIONARY)

•PERMANENT

•TRANSIENT

•INTERMIHENT

•DESIGN FAULTS

•SOFTWARE ERRORS

•LATENT FAULTS

• USER-ORIENTED LANGUAGE FOR DESCRIBING COMPLEX SYSTEM
CONFIGURATIONS AND SUCCESS CRITERIA (FAULT TREE)

2. CARE III - A GENERAL-PURPOSE RELIABILITY ANALYSIS AND DESIGN TOOL FOR FAULT-TOLERANT SYSTEMS

CARE III was designed to model large ultrarellable systems incorporating replicated digital
electronic subsystems. Examples of such systems are shown in figure 3 (refs. 16, 17, 18, and 19). The
CARE III assessment process is depicted In figure 4 and begins with an architectural description of an
ultrarellable system. If that description is based on a conceptual model of the system, then CARE III is
used as a design tool; or, if the system is well-defined, CARE III is utilized as an analysis tool. In
either case, the analyst generates a set of failure rates and probability density functions for the
various failure and error mechanisms he wishes to include in the analysis. A partial list of failure and
error models is delineated in figure 5. Inclusion of any of these models will necessarily lower the
system reliability estimate. The need to Include a model is of course a function of the architectural
structure, its fault-handling mechanisms, and the magnitudes of the parameters in the model. The large
choice of failure and error models is provided to increase the realism and credibility of the analysis.
The models are user options in CARE III and may be omitted at the discretion of the analyst. Usually he
will omit certain models after determining that they have a minimal effect. Some of this modeling
information is used to define the system fault-handling model(s) required as a user input, depicted by
the state diagram in figure 4. The remainder of the failure and error modeling data is entered as
Fortran NAMELIST statements for batch computation or the CARE3MENU user-friendly interface program may be
used for interactive input (ref. 20).

5-4

(a) Fault-tolerant
multiprocessor.

P P P P

0 0 b t
SYSTEM BUS X5 \ 1 , 1 „.

^ ^ '"l553

^
^ ^ A^^ AL AL

M 1 M M ll M 1 M

J

i I/O

• •■ 10 "

) ^--^ r <-^ . ,
SYSTEM STATUS
AND CONTROL.

VGTIKG

1 CL ̂ CLK CLK

MODE
SELECT
PANEL

□ INPUT SENSORS AND ELECTRONICS

□ OUTPUT CONTROLS AND ELECTRONICS

00-9^80 DIGITAL FLIGHT GUIDANCE SYSTEM

-CD

(b) DC-9-80 digital
flight guidance
system.

GPC* 1

SENSORS
ACTUATORS
DISPLAYS
CONTROLLERS

2
MASS

MEMORY
UNITS

CRT
DISPLAYS

CONTROL
PANELS

PAYLOAD
INTERFACE

P
28

1-MHz
SERIAL

DATA BUSES
123 SHARED.

1 5 DEDICATED)

ROCKET BOOSTERS
GROUND UMBILICALS

GENERAL PURPOSE COMPUTER

(c) Space Shuttle
system

SOFTWARE IMPLEMENTED FAULT TOLERANCE
(SIFT)

(d'l Software Implemented
fault tolerance (STFT).

Figure 3.- Highly reliable fault-tolerant systems
to which CARE III is applicable.

5-5

(WPUT)- ANY DIGITAL COMPUTER BASED
HIGHLY RELIABLE FAULT-TOLERANT SYSTEM

EXISTING/ CONCEPTUAL
SYSTEM DESIGN

SYSTEM FAULT
HANDLING DATA

Figure 4.- CARE IIT user process.

HARDWARE ANOMALY SOFTWARE ANOMALY

PERM. INT,/TRANS.

DESIGN FAB. RANDOM EXTERNALLY
ERROR ERROR FAILURE INDUCED

DESIGN FAB. RANDOM EXTERNALLY
ERROR ERROR FAILURE INDUCED

DESIGN CODE EXTERNALLY
ERROR ERROR INDUCED

DESIGN CODE EXTERNALLY
ERROR ERROR INDUCED

SIGNAL POWER PHYSICAL EMI
ERROR FAILURE FAILURE

SIGNAL POWER PHYSICAL EMI
ERROR FAILURE FAILURE

DATA PROCEDURE
PAHERN ERROR
ERROR

DATA PROCEDURE
PATTERN ERROR
ERROR

Figure 5.- Delineation of hardware and software failure and error models.

Another irapor-tant step in setting up CARE III input is the generation of the system configuration
and success criteria. Fault-tolerant systems are usually designed to have many hardware and functional
combinations that enable proper system operation. CARE III uses the powerful fault tree language to
describe system failure configurations. In large systems, the number of success combinations can be very
large, and for this reason CARE 111 uses the "unsucoess" or failure combinations instead. In a properly
designed system, the number of failure combinations should be considerably less than the number of system
success combinations, thus easing the computational task. The fault tree language provides an excellent
medium for delineating the system failure combinations.

Referring again to figure 14, the user-prepared data are initially processed by the CARE III input
subprogram, CAREIN, shown as the upper disk. It is essentially composed of the fault tree language
program. The second CARE III subprogram, COVRGE, processes the fault-handling model data and puts them
into the form required by the third subprogram, CARE3, which performs the reliability computations. CARE
111 is written entirely in the ANSI standard Fortran 77 language and currently executes on the Digital
Equipment Corporation 11/700 series computers, the Control Data Corporation CYBER 170 series computers
using the Fortran V compiler, and the International Business Machines 308X series computers. The CARE

5-6

III output data take two forms, graphical or tabular. In either case, the outputs of most interest are
the total system reliability or system survival as a function of time and two vital components:
probability of system failure due to hardware redundancy limitations (depletion of spares) and
probability of system failure due to Improper fault handling. In ultrareliable systems, the latter
factor is the predominant cause of system failure (ref. 20).

An example of the CARE III assessment process (batch Input) is given by figures 6 and 7. Figure 6
is a sketch of an ultrareliable fault-tolerant multiprocessor composed of 10 memory-processor pairs which
communicate with each other over 5 individuals bus lines shown in the chart as a solid bus line. This
system survives if at least 2 computers and 2 buses are operational. The analyst wants to compute the
probability of system survival at 10 hours of mission time for this multiprocessor system and the

10 IDENTICAL MEMORY PROCESSORS

BUS-

FAULT > Zy FAULT DETECTION
(SOFTWARE VOTE)

MEMORY CONTENTS
INITIAL TASK ASSIGNMENT ff g g^ ^ ^ RECONFIGURATION

DECISION BY EXECUTIVE S/W

TASK REASSIGNMENT

EXEC. ff g ff ^
Figure 6.- Ultrareliable fault-tolerant multiprocessor

SYSTEM
FAILURE

COMPUTER BUS
STAGE STAGE

SYSTEM FAULT TREE

SYSTEM
FAILURE

|2/10| l2/5|

COMPUTERS BUSES

CRITICAL-PAIR TREE

AD

DETECTION RATE

FAULT-HANDLING MODEL

$FLTTYP NFTYPS = 1, DEL = 3.6E2$
$STAGES NSTGES = 2, N = 10, 5, M = 2. 2, IRLPCD = 4. RLPLOT = T$
$FLTCAT NFCATS = 2*1, JTYPd, 1) = 1, JTYPd, 2) = 1,

RLM (1, 1) = l.OE-4. RLMd, 2) = 1.0E-5$
$RNTIME FT = 10. $
SYSTEM FAULT-TREE
12 3 3
3 0 12
CRITICAL-FAULT PAIRS
1 15 16 18
1 1 10
2 11 15

16 2 1 2 3 4 5 6 7 8 9 10
17 2 11 12 13 14 15
18 0 16 17

Figure 7,- CARE III input for ultrareliable fault-tolerant multiprocessor.

5-7

probability of system failure at 10 hours due to spare hardware depletion and due to Improper system-
fault handling. For this simple Illustrative example, the analyst creates two fault trees and a state
diagram for system-fault handling as depicted in figure 7.

The SYSTEM FAULT TREE describes the system stage configurations that cause system failure resulting
from depletion of hardware redundancy. The computer stage is comprised of up to 10 computers, each
having an identical failure rate. The bus stage is composed of up to 5 buses, each having and Identical
failure rate, most likely different from that of a computer. The OR gate In the SYSTEM FAULT TREE means
that the system fails if a computer stage fails or a bus stage fails. A computer stage fails If less
than 2 computers are operational, and a bus stage fails if less than 2 buses are operational. These
conditions are described in the line beginning with "$STAGES". This statement is a Fortran NAMELIST
statement. It says there are two stages (NSTGES=2), i.e., 10 computers and 5 buses (N=10,5), and the
minimum for stage survival is 2 for each stage (M=2,2). The remainder of the line describes the form of
output data requested. The fault tree description for CARE III input is shown under the heading, SYSTEM
FAULT-TREE. It describes the gate interconnections and the types of gates. There is another cause of
system failure that is implicit In the SYSTEM FAULT TREE and that is system failure due to single-fault
failures in either stage. Details of this model are discussed later.

A unique modeling capability of CARE III is the incorporation of the effects of synergistlc pairs of
failures. In fault-tolerant systems, the system could contain many undetected (latent) failures which
individually would not cause system failure; however, certain groupings of failures that coexist may
bring the system down. The CRITICAL-PAIR TREE enables the analyst to specify the conditions under which
synergistlc paired failures cause system failure. For this case, any 2 latent computer failures out of
10 computers or any 2 latent bus failures out of 5 buses cause system failure. For a more accurate
analysis, one would usually specify which paired failures cause system failure. The CRITICAL-PAIR TREE
is described by the data listed under the heading, CRITICAL-FAULT PAIRS (fig. 7).

The next step in the CARE III input process is the description of the FAULT-HANDLING Model. This
simple state model is composed of two system states, active (A) and active detected (AD). The active
system state is entered when a module failure occurs. It is an undetected or latent state. If a fault
detector is employed, is the rate at which failures are purged from the system. CARE III assumes that if
the system enters the active detected state and it has spare hardware, it will reconfigure out the faulty
module and the system will recover. Note, as 6 increases, the probability of synergistlc failures
occurring diminishes since there will be fewer latent failures present. In figure 7^ line 1, $FLTTYP,
shows that there is one fault model (NFTYPS=1) and defines the value of as 3.6 x 10 detections per
hour. Line 3, $FLTCAT, simply links failure rates denoted as RLM arrays to stages (JTYP) . Line 5,
$RNTIME, specifies a flight time of 10 hours.

CARE III input data for this example system begins with the statement $FLTTYP and includes all the
statements that follow in figure 7. The CARE III output includes the total system probability of
failure, the system probability of failure due to improper fault handling, and the probability of system
failure due to depletion of spares.

2.1 User-Oriented Language for Describing Complex System Failure Configurations (Fault Tree)

The multiprocessor example made use of a trivial application of the CARE III fault tree language. A
better example emphasizing the power of the fault tree input is given by figures 8 and 9. Figure 8 shows
a block diagram of a proposed fault-tolerant flight-control system. Of particular interest is the pitch
augmentation stability (PAS) short cycle function. The system fault tree for this function is presented
in figure 9. This tree illustrates that not only hardware redundancy can be represented but functional
redundancy as well. The elevator math model is functionally redundant to the secondary actuators. The
melding of hardware and functional redundancy is a common practice in aircraft design. The proper entry
of this fault tree into CARE III with the necessary failure rate and fault-handling data would yield a
prediction of the probability of loss of PAS function as a function of mission time. Figure 9 is read as
follows. An output from logic OR gate 212 constitutes loss of PAS function which can occur if an output
from OR gate 211 occurs, or if an output from gate 210 occurs, or both. Gate 210 yields an output if at
least 3 out of H secondary actuators or actuator function (elevator math model) fail. Secondary actuator
A will fail if computer A fails, or actuator A fails, or both. A similar description can be used to
delineate failures due to loss of computation or loss of sensors.

2.2 Fault-Handling Model Based on Probabilistic Description of Operative Detection, Isolation, and
Recovery Mechanisms

In figure 7, a simple fault-handling model of two states was described. CARE III has both a single-
fault model and a double-fault model for coincident paired failures. The single-fault model is given in
figure 10 and is shown in the dashed box. For illustrative purposes, three additional states have been
added so that the state diagram is a Markov model of a two-unit system. Initially, the system is in the
state 0 and has experienced no failures. When a module failure occurs, the module enters state A, the
active latent state, given by the arrival density, X(t). Depending upon the nature of the failure, i.e.,
permanent, transient, intermittent, etc., the fault-handling model would be defined differently. For
example, if the failure were intermittent, X(t) would be the probability density function (PDF) for the
arrival of an intermittent, and states A and B define the intermittent model where a and g are constant
transition rates into and out of state B. When the module is in state B, the benign state, the failed
unit appears to have healed itself; i.e., the manifestation of the failure, a fault, vanishes. However,
when the failed manifestation is once again resumed (the fault reappears), the module enters state A
where the failure looks like a permanent failure. It could be detected by a self-test program with PDF
i5(t'), and the system would enter state A , the active detected state. Given that a spare exists, the
system will purge the faulty unit and switch in the spare (dashed arc to state 1). Or while in the
active state, the fault could generate errors with PDF p(t'). The module then will enter the A^,, active
error state. The intermittent failure could manifest its intermittent state again so the module would
then enter state B , the benign error state. Although the failure is benign, the error may not be benign
and may cause system failure which is denoted by the B_ to F transition [(l-c)e(T)]. The error detection

Sensors Computers
ACT secondary

actuators
Primary Pilot Autopilot

actuators inputs inputs

Outboard
aileron,

outer segment

A \ Stabilizer
trim

FMC and GLA
accelerometers

Pitch
rate

Elevator

column

rimary M^j 0>- E^EIB

To dedicated ACT control surfaces

[r!!> Inboard flaperons
[?> Outboard flaperons

(3]]> Outboard ailerons, inner segment
li:S:P3Active control system equipment

PAS function equipment

Figure 8,

COMPUTED
DATA

Fault-tolerant flight control system - pitch augmented
stability function (PAS),

PAS (SHORT)
FUNCTION

LOSS

ELEVATOR
ACTUATORS

.210

C-A COMPUTER A

SIR-A INERTIAL REFERENCE SENSOR

SPRD PITCH RATE SENSOR

AE-A ACTUATOR ELECTRONS A

SENSOR
SET

COMPUTATION

I Q: 1 Q: TO: 'Y°^
o— o— o— o°-

SECONDARY
ACTUATOR

A

SECONDARY
ACTUATOR

SECONDARY
ACTUATOR

C

208

n
o

ELEVATOR
MATH
MODEL

Figure 9.- CARE III fault tree input for PAS function,

density is E(T), and 1-C is the proportion of errors from which the system is unable to recover. While
in state B„, the error could be detected and corrected. In this event, the module enters state B^

5-9

t = GLOBAL OR MISSION TIME

f = TIME FROM ENTRY TO STATE A

T = TIME FROM ENTRY TO STATE A^

Figure 10,- Overall reliability model of two-'unit system.

(benign detected) by transition OECT). At this point, the system may choose to do nothing further with
the detected and corrected error and so move to the benign state, or the system amy choose to reconfigure
out the module containing the error and, therefore, move to state 1. The dashed arcs are instantaneous
transitions. The other transition out of state A is to state F, the single point failure transition
[(l-o)e(T)]. This transition is similar to the B to F transition. In a well-designed fault-tolerant
system, {I-C)E(T) should be near zero. If X(t) is the PDF for the arrival of a transient, a would be set
to a value greater than zero and B would be equal to zero. The PDF X(t) for the arrival of a permanent
failure would be defined so that a = B = 0. The dashed arc going from state A to A enables the analyst
to include the effects of the system decision that the detected fault which took the module from state A
to A_ was, in fact, a transient. In this regard, the system would not reconfigure out a non-failed
module. A judicious choice of values for the single-fault model affords the analyst a wide range of
models. A different fault model may be assigned to each stage, or several models may be assigned to a
given stage to cover the effects of different failure mechanisms such as transients, intermittents, and
permanent failures.

The reader will note that the reliability model in figure 10 has three measures of time associated
with it which necessarily makes the model a semi-Markov process. This added complexity is required
because the behavior of the system is dependent on the onset of the various fault-behavior events.

2.3 Large Reduction of System State Size

The capability thus described comes at no small computational price if state of the art techniques
are employed. In fact, if one were to utilize the popular "Markov" modeling technique on a nontrivial
system such as the flight control system shown in figure 11 (which is composed of 22 stages and 64
reconfigurable modules) coupled with a reasonable set of failure and error models (some of which are
delineated in fig. 5), the number of system states would be on the order of millions. For each state, a
linear differential equation is formed. Clearly the solution of millions of differential equations is
computationally intractable if not impossible with today's technology. But CARE III was designed to
assess these types of systems. How does it do it?

To understand the CARE III state reduction method, it is expedient to first examining how the state
size buildup occurs in the Markov method. A Markov state is described as an ordered n-tuple. The
components of the n-tuple contain information about the number of failed reconfigurable modules in the
system plus system fault-handling information for each module and fault type (permanent failure,
transient, etc.). For the system shown in figure 11, the n-tuple has a minimum of 22 components, i.e.,
one for each stage. For each stage, additional n-tuple fault-handling components are added to describe
the number of failed modules that are system detected, the number that are Identified with a
reconfigurable module, and the number that have been recovered. A set of fault-handling components is
included in the n-tuple for each type of failure, e.g., transient, permanent, and intermittent. The
total number of n-tuple components becomes very large. The product of the n-tuple components gives the
number of possible system states; although in practice, the actual number is less than this but still
very large. In contemporary practice, tractable analyses are accomplished by making numerous assumptions
about the system to reduce the state size to the order of 1000. CARE III, on the other hand, retains a
considerable amount of detail without the burden of unmanageable state sizes. This feat is accomplished
in CARE III by separating fault-handling information from the fault occurrence, i.e., information about
the number of failed units. Each model is worked separately to a point then recombined (ref. 21). An
example of this state reduction is depicted by figures 10 and 12. When CARE III processes the fault-

5-10

Proc. &
memory I

MPX
A/D

Watch
dog

R/A

ILS

Yaw
rate

Lat

Norm
ace

Long
ace

Compass
coupler

DG

Comp

VG

Contr.
force

D/D &
ram

DADC
Pi tot
static

MPX
D/A

Hydr.
supply

Roll
servo LH

Pitch
servo

Yaw
servo

-o
■o

-o
-o
-o
-o

■o

o
-o
o
-o

Figure 11.- Advanced reconfigurable flight control system.

X^^X)

Figure 12.- Aggregated reliability model for a two-unit system.

5-11

t t

Pj(t) = e °

Xj(T)dT Z;PJ.(T)CJJ(T)XJJ(T)

dT

/ Xj(n)dn

WHERE

P,(t) = PROBABILITY OF BEING IN STATE I AT TIIViE t

X.j(t)= TRANSFER RATE FROM STATE j TO STATE I

X^(t) =Z\j(t>

C, (t) = COVERAGE ASSOCIATED WITH A FAILURE WHICH. IF COVERAGE WERE
J PERFECT. WOULD CAUSE A TRANSFER FROM STATE j TO STATE I

THE SYSTEM RELIABILITY IS GIVEN BY

R(t) = XI Py^t^

FOR THE SET L OF ALLOWABLE STATES.

Figure 13,- CARE III state probability computation.

handling model of figure 10, that Information is mapped into time-varying transition rates \At) and
X (t), as shown In figure 12. What might have been a stationary semi-Markov process for the system of
f?gure 10 will always become a nonstatlonary Markov process. For large systems, state size reductions of
at least 10,000 to 1 have been estimated. The solution to the nonstatlonary process model of figure 12
Is given by the solution to the forward Kolmogorov equation depicted in figure 13. The system
reliability is computed by summing the probabilities, PjCt), for the allowable or success states.
Numerically, it Is more accurate to compute the probability of system failure in lieu of reliability
(probability of system survival). The user-defined fault trees specify the system failure states, so
that the probability of system failure is simply the sum of Pj,(t) over 8,, the set of system failure
states. CARE III actually computes the probability of system failure using the equation,

J. i' X,{ii)dn 0

where the probability of system failure Is given by the sum of Qj,(t) over I, the set of system failure
states.

3. GLOSS-GATE LOGIC SOFTWARE SIMULATION

It is one thing to Implement a very powerful reliability model and quite another to make It useful.
For all reliability evaluators, including CARE III, a weakness lies in the unavailability of data for
many of the fault-handling parameters. The situation is not a total loss, however, since reasonable
engineering estimates can be made In many cases, and furthermore, the sensitivity of the system
reliability can be tested against variations in the questionable data. A better way, of course, is to
measure or estimate the parameters based on some empirical observations.

3.1 Latent-Fault Modeling and Measurement Methodology

Since system fault detection appears to be the most critical fault-handling parameter, NASA Langley
in 1977 initiated a series of studies to investigate a methodology for measuring the fault latency of
digital computers (ref. 22). The methodology consisted of simulating a 1000 equivalent gate computer in
a host CDC CYBER 173 computer. The simulated computer was a paper design and Is referred to as a

5-12

"hypothetical" machine. The hypothetical machine was simulated at the gate level. Actually, two copies
of the hypothetical machine executed identical code in synchronism, where one machine received a stuck-at
fault at the onset of the computation. Detection or nondetectlon was determined after the nonfaulted
processor completed its execution. At that time, the computational results of the two simulated machines
were compared, bit for bit. Any difference constituted detection. If no detection occurred, the code's
input variables were randomly altered, and the processes were repeated for the same fault. This scheme
was repeated for up to eight executions for the same fault, if detection did not occur. If a detection
occurred in less than or equal to eight repetitions, or no detection occurred after eight repetitions,
then a new trial began where another stuok-at fault was induced. This overall process was repeated for
up to 1000 randomly selected faults. The 1000 induced faults were selected as a function of piece-part
failure rates and were distributed equally across the nodes of the gates. The latency time, i.e., time
to fault detection, is expressed in number of code executions or repetitions.

The comparison of output data from two or more computers is often referred to as a comparison-
monitoring detector which is an important detection mechanism employed in many operational fault-tolerant
systems.

The results of the pilot study were both surprising and intriguing. Using six different programs
ranging from a very simple fetoh-and-store program to a very complex linear convergence scheme, the pilot
study showed that only 50 percent of the Induced faults were detected after eight repetitions for all six
programs. Figure 14 depicts typical results. The implication that these results have on reliability

LATENCY DATA

FAULT FREE
PROCESSOR

FAULTED
PROCESSOR

DETECTION,
%

ERROR
DETECTION

ONLY ~ 50% OF
"KNOWN FAULTS"

DETECTED IN A
SIGNIFICANT TIME

TIME TO DETECT

Figure 14.- Latent-fault measurement.

assessment for highly reliable systems is staggering. They suggest that highly reliable systems cannot
be designed with comparison monitoring or majority voting as the major stuck-at fault detector (ref. 7).

i.l Veriiicatlon of Latent-Fault Measurement Methodology

It was with this concern that a series of further experiments to investigate the validity of the
pilot study results were designed at NASA Langley. After all, it was not clear the similar results could
be obtained for a real processor executing practical software. The goals of the follow-on work were to
test the findings of the pilot study utilizing a real avionic miniprocessor, to access the significance
of injecting faults at the gate level and at the functional pin level, to evaluate an airborne self-test
program, and to account for undetected faults (refs. 22, 23, 24, and 25). The methodology for gate level
simulation, which was codeveloped by NASA Langley and Bendix, is called the GLOSS, Gate Logic Software
Simulator.

The pilot study results were tested in three phases using a gate simulation of the Bendix BDX-930
miniprocessor, a 5000 gate equivalent computer. Initially the same six pilot study programs were coded
using the comparable primitive instruction set of the hypothetical machine, i.e., load, store, add,
subtract, and branch. The next phase allowed the six programs to be receded using the rich instruction
set of the BDX-930, and finally comparison-monitoring detection was measured for a flight control system
code in lieu of the six pilot study programs. The surprising outcome of this experiment is typified in
figure 15 for all six programs. The percent of undetected faults is about the same for all the programs,
instruction sets, and two different machines, i.e., 50 percent. As the code becomes more complex, the
shape of the histogram bunches up, so that virtually all the detection occurs in the first execution.
The latency time decreases somewhat with increased code complexity, but not the percent detected.

When the same set of experiments are repeated with the exception that faults are induced at the
register transfer or pin level in lieu of the gate level, similar results shown by figure 16 appear. One
notable difference, however, is that the level of detection significantly rises.

5-13

DETECTED
FAILURES

300 —

COMPARISON-MONITORING
FIB

COMBINED GATE-LEVEL FAULTS

-35%

200 -

• - 58.2% UNDETECTED

100 -

-
5.5% ^.2%

1 ^^^/\:V
0 1 2 3 4 5 6 7 8 9 10 11 12

TIME TO DETECT. REPETITIONS

Figure 15.- Fault latency distribution - gate-level faults.

DETECTED
FAILURES

COMPARISON-MONITORING

300 FIB
COMBINED COMPONENT-LEVEL FAULTS

61.' 3% •

200 -

- 28% UNDETECTED

100 —

_ 9.0%
1

^frO.25%

1
0.8%^ -6--U p^ 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12

TIME TO DETECT, REPETITIONS

Figure 16.- Fault latency distribution - component-level faults.

5-14

% UNDETECTED,
8 REPETITIONS

0
SIX*
APPLS.

*NCT CORRECTED FOR 16%
INDISTINGUISHABLE FAULTS.
ALL OTHER DATA ARE CORRECTED.

0 \
PROGS.

I

SIX*
APPLS.

0 •FCS
PROGS.

1ST . 13% 1ST ^2%

2ND • 6% 2ND 1^0%
0 FCS 0%

LEVEL OF FAULT >
INJECTION

TYPE OF DETECTION >

GATE COMPONENT

COMPARISON-
MONITORING

GATE COMPONENT

SELF-TEST

ASSUMED
BY INDUSTRY

(0'
ASSUMED

BY INDUSTRY
(5%)

Figure 17,- Summary and results.

AR an extension to the pilot study, the latent-fault measurement methodology was applied to an
airborne self-test program consisting of 2000 BDX-930 Instructions which executeo in cnree uiilliseconds
on the BDX-930. While the simulator executed the self-test program, faults were induced at the gate
level and, in a separate experiment, at the pin level. The design goal for the self-test program was 95
percent detection. Figure 17 presents a summary of the self-test detection values and the comparison-
monitoring detection values. For the same level of fault inducement, the self-test code shows the
highest detection, but fell short of the 95 percent requirement for gate-level faults. With considerable
effort and expense, the 87 percent self-^test detection was increased to 9k percent, which appears to be a
practical upper bound on gate-level fault detection. Flight control system code improved fault detection
substantially but still fell short of zero percent undetected for gate-level faults. For component-level
injected faults, the industry-assumed value of zero percent undetected was achieved.

3.3 Some Profound Results and Observations

The wide dispersion
injection and, hence, wh
faults at the gate or pi
This concern is further
fault injection, yields
propagation mechanisms,
used with great caution,
faults that were not det
i.e., there exists some

of detection raises some confounding questions about the method of fault
ich detection parameters to use in reliability assessments. The inducement of
n levels yields a wide dispersion of detection when all other factors are equal.
exacerbated by the knowledge that the method practiced by Industry, pin-level
the higher detection values. At our present level of understanding of fault
the pin-level detection values would appear to be nonconservative and should be
if at all. This recommendation is based on our knowledge that the gate-level

ected after eight repetitions are potentially detectable or distinguishable,
code or sequence of code that will propagate a distinguishable fault.

In the process of investigating the reason why faults were not detected after eight repetitions, it
was discovered that there exists a class of faults that can never have an effect on the system and,
therefore, will never be detected. This class of indistinguishable faults has been estimated to comprise
16 percent of all faults. An example of an indistinguishable fault is a stuck-at fault located at the
unused output of a flip-flop circuit. An important outcome of this discovery regards the method of
estimating detection coverage. The more accurate approach is to delete the 16 percent indistinguishables
from the set of induced faults in the computation of detection coverage. The net effect is to increase
the magnitude of detection coverage.

The lessons learned from these latent-fault modeling and measurement studies are summarized as
follows:

o Practical measurement of detection coverage for stuck-at faults is possible and is a necessary
aspect of reliability assessment.

o Comparison-monitoring detection for typical application codes is much less than expected, which
poses serious implications for highly reliable systems.

o 95 percent gate-level self-test detection coverage is measurable and achievable, but expensive to
accomplish,

o The industry practice of measuring self-test detection by inducing faults at the pin level may
not be conservative, and in view of the fact that the reliability of highly reliable systems is
very sensitive to detection, further analysis of this practice is required.

5-15

4. CONCLUDING REMARKS

The CARE III program and the user-friendly interface, CARE3MENU, are currently available to U.S.
companies through NASA's software dissemination facility, COSMIC (ref 26). The CARE III math model is
embodied in a Fortran 77 computer program that has received considerable national scrutiny. The
validation of CARE III was conducted by industry, the university community, and by the U.S. Government at
NASA Langley Research Center and by the U.S. Air Force at Wright-Patterson Air Force Base.

The development of a generally applicable GLOSS computer program, which embodies the GLOSS
methodology, is currently underway. The GLOSS will execute on the VAX-11, 700 computers series (ref.
27).

REFERENCES

1. Mathur, F. P.: Reliability Study of Fault-Tolerant Computers in Supporting Research and Advanced
Development. Jet Propulsion Laboratory, Aug. 1969, Space Programs Summary 37-58, Vol. Ill, pp. 106-
113.

2. Blazek, R. H. et al.: Demonstration of Combined Reliability Prediction and Verification Techniques
to a Typical Flight Control System, Vol. I, Development and Application of Tabular System Reliability
Analysis to the F-111 Pitch Flight Control System. Battelle Columbus Laboratories, AFFDLOTR-71-128,
Vol. I. (Available from AF Flight Dynamics Lab, Wright-Patterson AFB) , Oct. 1971.

3. Roth, J. P. et al.: Phase II of an Architectural Study for a Self-Repairing Computer. SAMSO TR-67-
106, U.S. Air Force, Nov. 1967. (Available from DTIC as AD 825160.)

H. Bouricius, W. G. et al.: Reliability Modeling Techniques and Trade-Off Studies for Self-Repairing
Computers. RC 2378, Res-Div., IBM Corp., Feb. 1969.

5. Raytheon Company, Sudbury, MA: Reliability Model Derivation of a Fault-Tolerant, Dual, Spare-
Switching Digital Computer System. NASACR-1324H1, 1974.

6. Raytheon Company, Sudbury, MA: An Engineering Treatise on the CARE II Dual Mode and Coverage Models.
NASA CR-144993, 1976.

7. Bavuso, S. J.: Impact of Coverage on the Reliability of a Fault Tolerant Computer. NASA TN D-7938,
1975.

8. Ultra-Systems, Inc., Newport Beach, CA: Reconfigurable Computer Systems Study. NASA CR-132537,
1974.

9. Bjurman, B. E. et al.: Airborne Advanced Reconfigurable Computer System (ARCS). The Boeing
Commercial Airplane Company. NASA CR-145024, 1976.

10. O'Neill, E. J.; and Halverson, J. R.: Study of Intermittent Field Hardware Failure Data in Digital
Electronics. Sperry Univac Defense Systems, St. Paul, MN. NASA CR-159268, 1980.

11. Masson, G. M.: Executive Summary - Intermittent/Transient Faults in Computer Systems. The Johns
Hopkins University. NASA CR-159229, 1979.

12. Nagel, P. M.: Software Reliability: Repetitive Run Experimentation and Modeling. ■ Boeing Computer
Services Company. NASA CR-165836, 1982.

13. Stiffler, J. J. et al.: CARE III Final Report Phase 1, Vols. 1 and 2. Raytheon Co., Sudbury, MA.
NASA CR-159122 and NASA CR-159123, 1979.

14. Bavuso, S. J.: Trends in Reliability Modeling Technology for Fault Tolerant Systems. AGARD Conf.
Proc. No. 251 on Avionics Reliability, Its Techniques and Related Disciplines, April 1979.

15. Stiffler, J. J.; and Bryant, L. A.: CRE III Phase II Report, Mathematical Description. Raytheon
Co., Sudbury, MA. NASA CR-3566, 1982.

16. Hopkins, A. L.; and Smith, T. B.: The Architectural Elements of a Symmetric Fault-Tolerant
Multiprocessor. IEEE Trans, on Computers, Vol. C-24, No. 5, 1975.

17. Osder, S.: The DC-9-8O Digital Flight Guidance System's Monitoring Techniques. Sperry Flight
Systems, Phoenix, AZ, AIAA Paper 79-1704, 1979.

18. O'Hern, E. A.: Space Shuttle Avionics Redundancy Management. Rockwell International, AIAA Digital
Avionics Systems Conference, April 1975.

19. Wensley, J. H. et al.: Design Study of Software-Implemented Fault Tolerance (SIFT) Computer, SRI
International, Menlo Park, CA. NASA CR-3OII, 1978.

20. Conrad, C. L. et al.: CARE III User Friendly Interface User's Guide. Research Triangle Institute,
Research Triangle Park, NC. NASA CR-172608, 1985.

21. Stiffler, J. J.: Fault Coverage and the Point of Diminishing Returns. Journal of Design Automation
and Fault Tolerant Computing, Vol. 2, No. 4, Oct. 1978.

22. Trivedi, K. S.; and Geist, R. M.: A Tutorial on the CARE III Approach to Reliability Modeling. Duke
University, Durham, NC. NASA CR-3488, 1981.

5-16 ' • ,

23. Nagel, P. M.: Modeling of a Latent Fault Detector in a Digital System. Vought Corp., Hampton, VA.
NASA CR-11)5371 , 1978. ^ .,

214. McGough, J. G.; and Swern, F. L.: Measurement of Fault Latency in a Digital Avionic Miniprooessor.
Bendix Corp., Teterboro, NJ. NASA CR-3462, 1981.

25. McGough, J. G. et al.: Methodology for Measurement of Fault Latency in a Digital Avionic
Miniprooessor, AGARD Cong. Proc. No. 303 on Tactical Airborne Distributed Computing and Networks,
June 1981.

26. Bavuso, S. J. et al.: Latent Fault Modeling and Measurement Methodology for Application to Digital
Flight Controls. Advanced Flight Control Symposium, USAF Academy, Colorado Springs, CO, Aug. 1981.

27. Bavuso, S. J. et al.: CARE III Model Overview and User's Guide
(first revision). NASA TM 86401), 1985. ' '

28. McGough, J. G. et al.: Feasibility Study for a Generalized Gate Logic Software Simulator. NASA CR-
172159, 1983.

6-1

I S A U R E

Integration of Security and fAUlt tolerance

in the REalite 2000 system

J.CAZIN (*) and P. MICHEL (*)

1. INTRODUCTION

In the framework of the french project SURF sponsored by ADI (**), the ONERA/CERT research center
(*) and the INTERTECHNIQUE Company (***) have developped a fault tolerant operating system, named ISAURE.

This system includes data protection features and error recovery mechanisms. It offers the same
services as the REALITE 2000 system already available on the market. It used first the MULTI6-
INTERTECHNiqUE microprogrammable machine, and later a specific hardware implementing protection domains via
capability based adressing mechanism.

The collaboration between the two organisms is the result of converging and complementary aims :

. the INTERTECHNIQUE Company is trying to set up a future range of systems and machines oriented
towards management applications and offering a high level of functional security ;

. the CERT/ONERA research center wishes to apply methodological research results /I, 2/ and thus
continues its research work in the context of practical applications.

This collaboration is one of the more original features of the project and it allows the
introduction of advanced concepts into the industrial sector.

1.1. Services offered by the REALITE 2000 system

REALITE 2000 is a management oriented system. It functions in a real time conversational context
and is available to multiple users (up to 32). It manages a data base by using a virtual memory system.

Users dialogue with the system through display devices. All communications are made through either
easily assimilable languages adapted to the applications of the system : JCL, Text editor, BASIC-
management, FRANCAIS (interrogative language very close to the usual French thus allowing the data base to
be consulted easily) or preestablished specific application programs.

The data base is decomposed in a four levels file hierarchy :

system dictionary —> user dictionary —> file dictionary —> data file

The file structure allows the manipulation of items of variable lengths and also directs access to
them, thus ensures a compromise between performance and storage efficiency.

REALITE 2000 system, by using a virtual memory technique, offers the user's programs a memory
capacity equal to that of the mass storage connected on line to the system.

1.2. Additional user needs

In the context of business management, it is extremely important that the management tools be
infallible, as any defect may cause perturbations which could be fatal for the firms using these tools. We
may observe several critical aspects :

. security and coherence of information in the data base, which constitutes the user's most
important holdings ;

. availability and continous functioning of the system even when incidents are present.

They are several causes for incidents (or exceptions) :

. user error of malice ;

. misuse encouraged by the system itself ;

. software error in either the operating system or the application programs ;

. hardware failures.

(*) ONERA-CERT : Centre d'Etudes et de Recherches de Toulouse - 2, av. Edouard Belin
BP 4025 - 31055 TOULOUSE CEDEX - FRANCE

(**) ADI : Agence de I'Informatique - Tour Fiat Cedex 16
92084 PARIS LA DEFENSE - FRANCE

(***) INTERTECHNiqUE : Soci6t6 Intertechnique - B.P. 1 - ZI "Les gatines"
78370 PLAISIR - FRANCE

6-2

1.3. General specifications for I5AURE

The general remarks in 1.2. reinforced by the conclusions of a critical study of REALITE 2000 are ,
at the origins of the basic specifications of the ISAURE system ; 5

1

. make use of the services of the REALITE 2000 system ; \

. offer a safer policy for using the system (strict dynamic management of privileges and rights, a
more orderly use of the data base, more elaborate tools for programming applications) ;

. set up a very reliable structure and organization of the system, based on firmly established
principles : design methodologies /3,4/, error confinement and data protection /5,6,7,8,9/ ;

. offer error recovery mechanisms based on exception handling principles /lO,11,12,13,14/ to deal ,
with incidents mentionned in 1.2. ,'

These basic specifications have led to important technical choices : ^

. develop a PASCAL-like programming language adapted to modular systems (this choice, moreover has
eliminated many problems inherent to programming a system in an assembly language) ; . ^

i'

. emulate by microprogram a capability-based adressing machine and later built up a specific
hardware.

In the two following sections, we set up the problems of error confinement and error recovery and
present the solutions (formalism and tools) choosen in the ISAURE system.

The last section deals with a detailed example ; error recovery in the ISAURE data base management. '

2. ERROR CONFINEMENT IN A MODULAR AND HIERARCHICAL SYSTEM j

2.1 Error confinement and hierarchy

The design phase of a program (or a system), by stepwise refinement, leads to a hierarchy and to a '
decomposition of the program into types or functions. According to their level in the hierarchy and the 1
chosen formalism, they are implemented by modules, monitors, clusters, procedures, blocks, instructions... I
/3,4,15,16/. We will use, later on, the word component to name one of these implementation units. ^

Considering program structures, two kinds of ordering relations between components within a 1
hierarchy must be pointed out : I

. the "nesting relation" ; for example, a procedure nests a block, a block nests another block (in
ALGOL-like langages).
The nested component context, i.e. the set of reachable data from the component, is the union of local data
of the component and of the nesting component context.

. the "calling relation" ; for example, a module calls another module, a procedure calls another
procedure.
The contexts of calling and called component are dissociated. A mechanism for parameter passing is needed
to transfer some information between these two components.

The nesting and calling relations are generally used together. In an ALGOL program, for example,
the nesting relation is prevailing with nested blocks but there are also procedure calls. In a domain '■
system, the relation between two domains is always the calling relation but a domain nests procedures. ';

The distinction between these two kinds of relation is important for error confinement : data %
isolation uses the calling relation. Intersection between the contexts of two components related in the ,
calling relation is reduced to the necessary minimum, i.e. the set of parameters between these components. >

i

Therefore, the error confinement principle implies not to use the nesting relation at least before
some level of refinement. Error confinement exists between components generated at this level. This ',
approach is found in systems structured in domains, like ISAURE, where error confinement exists between
domains but does not exist between lower level components inside a module (procedures, blocks).

Some data have a life-time longer than the execution time of the components that use them (for /
example a whole session time for book-keeping data, or several days for files). Partitionned systems
generally use the notion of "remanent data" : the value of a remanent data is preserved from one execution •
of the component which contains it, to the next one.

2.2. Modularity and hierarchy in the ISAURE system

The ISAURE system uses the error confinement principles as defined above. Its basic component is
the module and the nesting relation appears only at refinement levels below module level.

ISAURE is a multi-process system. A process runs in a hierarchy of modules. The run time context of
a process, i.e. the set of objets reachable by the process, changes everytime a module is entered.
Parameter passing is the only way modules can communicate. A parameter object belongs to a calling module
and can be accessed from a called one as long as the process is running this module.

A module is a set of closely related objects (resource, access functions, working data...). The
ISAURE system runs on a capability-based addressing computer ; every access to an object is made through
and under control of a capability (type control, object overflow control, right control). Then a list of

6-3

capabilities represents a module. Basic objects are segments like data segments or program segments, or
capabilities segments (capability-list or C-list).

calling module

capability
list

resources
working data

Figure 1 : an ISAURE module

Inter-process communications and resource sharing are made in particular modules : the monitors. So
three types of modules are defined in the I5AURE system :

. private modules or domains : they consist of a set of private objects accessed through a private
C-list ;

. general monitors or G-monitors : they allow inter-processes communication and resource sharing. A
G-monitor is re-entrant and consists of a set of shared functions (procedures), one or more shared
resources and a set of private data allowing re-entrance (i.e. one set of data per process). Each hierarchy
owns an actual occurence of such a G-monitor, that is a private C-list ;

Process 1

D Procedures

D

n
n shared resources □
private

D
data

D

Process 2

- Figure 2 : a G-monitor -

. simple monitors : they are shared, but not re-entrant. Their implementation is far easier than
for G-monitors. Not private data are needed in such a module and every object is shared ; neither re-
entrance nor synchronization is to be ensured. Such a monitor is represented by a shared C-list, and all
processes may access it. This kind of module turned out to be efficient for basic resource management
(virtual memory overflow management, for example) or for specific processing (error messages management).

Process 1

Process 2

D
n

n

a
- Figure 3 : a non re-entrant monitor

6-4

Every module in the ISAURE system is described by an interface and a body.

The interface describes the external aspect of the module (entry points, parameters) for calling
modules. The body describes the set of internal objects of the module (data, procedure) and the set of
called modules.

The interface and the body description are both divided into a normal and an exception area ; the
last one is described in the next section.

INTERFACE file ;
ENTRY readitem :

key : keyitem (R) j % read only access (keyitem = predefined type)!S
buffer : item (W) ; % write only access (item = predefined type)S

END
ENTRY writeitem :

key : keyitem (R) ;
buffer : item (R) ;
END

EXCEPTION AREA ;
<exception area>

END ^interfaces

PATTERN file ;
SHORT DATA (R,W) iSexample of dataS

V;^, V2 : TALLY ;
d : DOUBLE ;

END

Ptfile : CAPABILITY (R,W,C) ; % pointer of fileS

p^ : IPROCEDURE ; ^ % internal procedure^

CALLED mem-alloc (getframe, releaseframe) ; % called module^
EXCEPTION AREA ;

<exoeption area>
END % pattern %

- Figure 4 : an exanple of ISAURE system -

3. ERROR RECOVERY IN MODULAR SYSTEMS

Several steps can be distinguished in fault treatment ;

. error detection ;

. error localization that is determinating what objects caused the fault, and evaluating damage ;

. error recovery consisting of ;
* damage repair, that is putting the system back into a coherent state ;
* restarting execution from this coherent state.

This state is either the current state (forward error recovery) or a previous coherent state
(backward error recovery).

The above defined functions are called curative processing ; sometimes they imply preliminary
processing (that we shall name "monitoring functions") such as safeguard in a backward error recovery
strategy. We shall name "exception handling" the set of all these functions and "exceptions", the events
which start them : error detection or monitoring function call.

3.1. Exception handling in modular systems

Exception handling in hierarchical and modular system is based on the principle of error masking :

. we try to recover an error in one component, i.e. to mask the error for the upper level
components ;

. if this recovery cannot be done, the error is propagated toward the immediate upper component
where error masking will be tried again.

The important problem which is set up is to know at which level error masking is possible ; we
shall name this level the recovery level. Error recovery cannot be done in one component either when error
localization cannot be done inside this component or when error localization shows that upper levels are
involved in the error. Therefore, determining the recovery level depends on error localization : the
recovery level is the highest level involved in the error if localization has precisely determinated this
level or an adequate level which ensures recovery by an over-estimation of the error effects.

6-5

Viewed from a component, a detection of exception is :

. an internal detection, made by an explicit detector or assertion ;

. or an implicit detection coming from a lower-level component (hardware or software) and signaled
by an exception raising mechanism.

When an exception is detected, it must be taken into account even if its causes are unknown ; every
exception must always be associated with a handler. Dynamic association between exceptions and handlers is
interesting to provide flexibility in programs.

Exception handling consists, as formely said, in restoring data in a consistent state and in
restarting the normal processing. Consistency generally concerns data at several levels. A handler located
in a module cannot correct erroneous data in lower levels, and must therefore call some recovery functions
at these levels ; we shall name sub-handlers the functions recovering residual informations.

Restarting normal processing corresponds to the end of an exception handler on the recovery level ;
two kinds of restart must be considered ;

. a return to the running point, i.e. after the operation which raised the exception ; it
corresponds to a forward error recovery and we shall call it a CONTINUE restart ;

. a new execution of the operation in which the exception was raised ; it corresponds to a
backward error recovery and we shall call it a RETRY.

If the current level is not the recovery level, a handler must raise an exception for a higher
level ; we shall call this case an ABANDON.

3.2. Tools for exception handling in ISAURE

We have so far used in this section the general term "component" without saying anything about its
nature : module, procedure, block... A module is the basic component in the ISAURE system : declarations of
exceptions and handlers are made as any other declaration at the module level. Nevertheless, some
exceptions deal with components smaller than a module (e.g. a procedure or an instruction) and recovery
must be provided at their level. In order to solve this problem a recovery level may be associated to an
exception inside a module ; we shall see that the recovery level associated to an exception will be induced
by the location of the association between the exception and a handler.

We are now going to present the choices that have been made in the ISAURE system, beginning with
linguistics tools. As we have seen in the previous section, an ISAURE module is divided into two areas : a
normal area and an exception area, which brings modularity and independence between normal and exceptional
treatments. Declarations and associations presented below will be located in the exception area of the
modules.

calling module

exported exception

normal area "^\ exception area

n ° I I local-explicit

f<iiS«.

exceptions

D D

handlers

association
stack
echanism

call to a
sub-handler

Figure 5 : Exception handling in a nodule

3.2.1. Declaration of exceptions

We can find two kinds of exceptions in a module :

. local exceptions. They are either explicit and declared in the exception area of the module or
implicit, i.e. defined and raised by lower level modules ;

6-6

. exported exceptions. They are explicit and declared in the interface of the module in order to be
reported to the calling modules.

Let us point that an exported exception of a module is considered as a local and implicit exception
by a calling module. Exceptions raised by hardware are a particular case of implicit exceptions in a
software module and are predefined in the language.

1
3.2.2. Declaration of exception handlers and sub-handlers

An exception handler is a particular procedure in the exception area of a module. A sub-handler is
a special entry point, defined in the exception area of the interface of a module (see figure 6).

The translator verifies that a sub-handler is only called from the exception area of a calling
module, i.e. by an exception handler. Let us point that calling a normal entry point of a module from an
exception handler of a higher module is allowed and may even be very useful if we want, for example, to
undo by a reverse function what has been done by an entry point, the reverse function being an other entry
point.

3.2.3. Definition of associations between exceptions and handlers i

Associations in a module only concern local (either explicit or implicit) exceptions of the module.
An association between an exception and a handler defines the handler to start on an occurence of the
exception ; it may (optionally) also defines the restart mode (CONTINUE or RETRY) at the end of exception
handling.

Syntax [<exception-name> —> <handler-name> {(<restart-mode>)}]

Example [errformat —> salvation]

[b —> backup (RETRY)] '■

Two kinds of assocations are possible : i

. Statics associations

A static association is valid during the whole execution in the module. It may be an explicit
association defined in the exception area of the module.

For an implicit excep);ion, i.e. an exception raised from a lower module, it may be an implicit
association ; this kind of association and the handlers associated are predefined and stored in a library.
So implicit handlers and associations are predefined for exceptions raised from hardware or basic parts of
the operating system so as to avoid the programmer to always take them into account.

An implicit association prevails over an implicit association.

. Dynamics associations

They are explicitely defined inside the program. The scope of a dynamic association is a component
(procedure, block, or instruction) ; this component depends on the location of the association definition :

. it is the called procedure for an association defined after a procedure call instruction ;

. it is a block for an association defined after a "begin" keyword ;

. otherwise, it is the instruction which comes before the association.

Assocations concerning one exception are recorded on a stack so that the association of the finest
level may prevail : an association on the instruction level prevails over an association on the block level
which prevails over an association on the procedure level which prevails on a static association (module
level).

3.2.4. Occurence exception

An implicit exception is raised from a lower level module. It is an implicit occurence of exception
for the current module.

An explicit exception is explicitely raised inside the current module by an assertion test.

Syntax IF <condition> RAISE <exception-name>

If the exception is a local exception, its occurence will lead to the execution of the associated
local handler. If it is an exported exception, its occurence will be transmitted to the calling module.

Remark : An occurence of an exception (local exception) for which there is no association, activates a
standard default handler (the same for every exception) which sends a message to the user and raises an
exported exception (i.e. ends by an ABANDON).

\

6-f

3.2.5. End of exception handling

The execution of an exception handler ends on one of the following instructions :

. RAISE <exported-exception> : the handler raise an exception for the calling module ;

. RETRY : the execution of the component interrupted by the exception occurence is retried. The
restarted component (module, procedure, block or instruction) is given by the association stack formerly
mentionned ;

. CONTINUE : the execution restart at the end of the interrupted component ;

. RETURN : the restart mode (RETRY or CONTINUE) is given by the association used on the exception

occurence.

3.2.6. Hardware and microprogrammed features

We consider only tools that concern fault tolerance and just list them without any details.

We can distinguish two categories ;

. features for error detection and error confinent :
* classical hardware controls : parity check, transfer check,
* capability-based addressing with type, access right and overflow controls,
* instructions for domain commutation : ENTERDOM instruction with parameter passing and RETURNDOM
instruction.

. features for exception managenent :
* instructions for software exception raising : RAISE instruction for any internal exception
starts the execution of a local handler ; RETURDOM instruction for an exported exception reports
the exception up to the calling module ;
* handler starting mechanism : it takes into account the exception raising and uses an execution
transfer stack which is updated by associations ;
* special return instructions : they implement the handler ends (RETRY or CONTINUE modes).

3.2.7. Software features

Software features for exception handling are distributed throughout the whole ISAURE operating
system. In the next section we will just present errors recovery in the ISAURE data base.

A. ERROR RECOVERY IN THE ISAURE DATA BASE

4.1. Organization of the ISAURE file management

A file is composed of one or several "groups". A group is a set of linked pages of virtual memory
(we shall call them "frames" according to the constructor terminology) ; it contains a sequence of items.
Items are delimited by a special separator byte. The first field of an item gives the length of the item,
the second field is the key of the item.

So, a file is composed of two types of informations : structure description (links for frames,
separators and length of items) and user data.

link I

lengtht key f content of the ith item ^

A group = A set of linked frames A group = A sequence of ite

Figure 6 : file structure

6-8

In the ISAURE operating system each active file is encapsulated with its acces functions in a
module (a private module if the file is not shared or a G-monitor in the other case ; of. §2). The module
are integrated in the following hierarchical structure.

process i

I
JCL module

JL
user program

File management

memory allocator

(*)

(») process j
^'''^ (shared file)

(*x)

(x*x)

(*) private module

(s*) G-monitor or
private module

(xx*) non-reentrant
monitor

Figure 7

In the context of business applications, a user program deals with cyclic or repetitive executions.
We shall call transactions these executions. A transaction uses the services of a file management module
for access operations on a file. A file management modules uses the services of the memory allocator
monitor to get and release virtual memory frames.

4.2. Objectives of the exception handling

An incident may have various origins (user mistake, software or hardware failure) and may cause a
loss or an alteration of information in the data base. The damage may be limited to structure information
or may be spred also to user data. In the first case detection, exception raising and exception handling
are realized in the file module where structure organization is known whereas in the second case they must
be located in the user module for a more global restoration.

The objective being to recover the various informations (partially or entirely),several recovery
strategies are proposed : recovery of the structure with a SALVATION HANDLER or entire restoration of all
information with a BACKUP HANDLER /17/.

In the following paragraphs, with previous formalism and tools, we present the scheme of the
general strategy and we detail the principles of the two programs ; first we consider a context of non
interactive processes and then we look at the case of shared files.

4.3. General scheme of the strategy

modules.
The strategy of data base recovery concerns essentially the user program and file management

In normal running, the user module calls periodically a safeguard handler by raising a monitoring
exception associated with it to prevent a data base error. Its role is to record a copy of modified data.

During the execution of its operations, the file management module controls and tests various
assertions ; when a test is negative, an exception is raised and the associated handler is called ; two
cases must be considered :

. local exception ; the associated local handler is named SALVATION HANDLER ;

. exported exception with propagation to the user module ; the associated handler in this last
module is named BACKUP HANDLER.

Note that the SALVATION HANDLER can restore only a partial coherent structure in this case ; the
user module may call the BACKUP HANDLER for a total restoration.

In all these strategies the executions of handlers need the call of the virtual memory allocator
monitor to release residual frames and to ensure a correct state of memory. The figure 9 gives an
illustration of this discussion and figure 8 presents an example of the programming formalism.

6-9

INTERFACE user ;
ENTRY transaction ;

END

PATTERN user ;
key : keyitem (R,W,P) ;
buf : item (R,W,P) ;

operate : IPROCEDURE ;
CALLED file (readitem, writeitem) ;

EXCEPTION AREA ;
s,b : EXCEPTION ;
herrfile : HANDLER ;
safeguard : HANDLER ;
backup : HANDLER ;

[errfile —> herrfile] ;
[s —> safeguard (CONTINUE)] ;
[b —> back up (RETRY)] ;

END

PROCEDURE transaction ;
BEGIN

% initial processing %

test := TRUE ;
WHILE (test) DO

BEGIN
RAISE s ;
ENTER file, readitem (key,buf)

% internal procedure %

% statics assocations %

% explicit occurence
S module call %

operate ; [errfile —> backup (RETRY)] ^procedure call* assoc ^
ENTER file, writeitem (key, buf) ;
END

RETURNDOM ;
END

INTERFACE file ;
ENTRY readitem : key : keyitem (R) ; buffer : item (W) ; END
ENTRY writeitem : key : keyitem (R) ; buffer : item (R) ; END

EXCEPTION AREA ;
errfile : EXCEPTION ;

END

PATTERN file ;
!S declarations of normal data and procedures (cf. figure 4) %

CALLED mem-alloc (getframe, releaseframe) % called module %
EXCEPTION AREA ;

errformat : EXCEPTION ; S local exception S
salvation : HANDLER ;

[errformat —> salvation]
END
PROCEDURE readitem ;

S static association K

% description of procedures %

Figure 8 : user and file modules
-JCL MODULE

FILE MODULE
reidltem errf

(S

rfnT-T.J!- /salvacioa -y

y-^^r^ . RESTO! ' ' errfor-T-Ai- ' '

□ g
'ORE

Current file

SAVE

oaCL-cug file

•MEM-ALLOC MODULE
Figure 9 : Recovery strategy in ISAURE file management

6-10

Recovery of information structure ; the salvation handler

Its objective is to set back up, when possible, the links between frames or the length of items
from redundant informations (forward and backward links between frames, lengths and separators of items).
This handling does not ensures that the file will be entirely repaired ; for example it doesn't repair user
data damages. i

Total recovery of the file i_ the backup handling

Its objective is to allow the recovery of all user's and structure informations in a consistent
states. To this end, two handlers have been implemented :

. a preventive handler (the safeguard handler) which starts during normal processing. It
establishes a checkpoint by recording a copy (a "backup version") of the current, presumably correct, state
of the file. This recording is made after a fixed number (which may be modulated) of modifications in the
file ;

. a currative handler (the backup handler) which starts when a crash is detected. It restores the
file in a correct state, i.e. the state of the previous checkpoint.

4.4. Case of interactive processes sharing one or several files

The recovery of interactive processes sharing files leads to the problem of coherent restoration
and restart for all process /18,19/.

For that purpose, we use the notion of transactions for the synchronization of the safeguard of
these shared files : a safeguard may occur when each process is at the beginning of a transaction. Thus,
each beginning of transaction is considered, for a process, as a possible recovery point (called an
aptitude point) and raises an exception (the "aptitude exception").

The safeguard is automatically invoked each N transactions (this frequency is a parameter of the
application) when the current process starts the transaction. The safeguard handler will be actually run
when all the other processes will have raised the aptitude exception, safeguard and aptitude handlers
having then locked all the processes.

Figure 10 gives an illustration of the above discussion.

safeguard aptitude point

recovery
line

recovery
line

Figure 10

When an incident occurs in the system or in a USER module, recovery consists in activating the
backup handler which restores the state of the last checkpoint of the file and which informs users of the
transaction number from where to restart.

To implement this strategy we have integrated monitoring exceptions of aptitude inside USER modules
and synchronization manager inside FILE modules.

Coherence for several files

We will discuss this problem with the example of two processes PI and P2 which share the file F2
and which own a private file, respectively Fl and F3 (see figure 11) :

Suppose that PI raises a safeguard exception : file Fl can be saved but in the case of F2 we must
wait for an authorization of P2 (aptitude exception). In this context, to maintain coherence if an incident
appears, it is necessary to ensure the saveguard of the three files at the same time. So a checkpoint
concerns a set of files and not only one file and is effectively done only when the aptitude exception has
been raised by all the processes using at least one of these files.

6-11

Figure 11

5. CONCLUSION

Modular and hierarchical conception of the ISAURE system has allowed us to carry out the error
confinement and recovery principles and to develop appropriated techniques and tools.

The error recovery functions in the files which were presented in the last section of this paper,
show an example of using these tools.

These principles and tools have been used in specification and implementation of every function in
the ISAURE system : virtual memory management, overflow management, directories or commands management.

We can say to conclude that the interest of the ISAURE system stays in using a set of techniques
and in trying to define the best association of them for the system reliability ; stepwise refinement
conception method, modularity and exception handling features in the programming language, error recovery
techniques in data base, error confinement features, capability-based addressing machine.

ACKNOVfl-EGHENTS

We would like to thank the others participants of the ISAURE project for their useful and friendly
contribution during four years : L. BOI from ONERA/CERT, M. BUIS, M. BAUMGARTEN, 3.M. OANTKE from
INTERTECHNIQUE Company and A. PLAS from UPS university of Toulouse.

REFERENCES

/I/

/2/

ni

A/

/5/

/6/

/7/

/8/

L.BOI, P.MICHEL ,.,•
"Design and principles of a fault tolerant system"
Proceedings of 3rd Conference on Software-engineering
Atlanta, (May 1978)

L.BOI, P.MICHEL, M.BUI5, J.M. JANTKE, 3.CAZIN, A.PLAS
"ISAURE : a modular system for data security and fault tolerance"
IFIP Working Conference on "Reliable Computing and Fault Tolerance in the 1980's", London,
(Sept. 1979)

B.H. LISKOV
"A design methodology for reliable software systems"
Proc. of AFIPS-FJCC, vol. 41 (dec. 72)

D.L. PARNAS
"The influence of software structure on reliability"
Conf. on reliable soft. proc. ACM (April 75)

R.S.FABRY
"Capability-based addressing"
Univ. of California, Com. ACM 17-7 (July 74)

P.J. DENNING
"Fault tolerant operating systems"
Purdue University, India - ACM Computing Surveys, vol.8, n°4 (Dec. 1976)

T.A. LINDEN
"Operating system structures of support security and reliable software"
ACM Computing Surveys, vol. 8, n°4 (dec.76)

W. WULF & al
"Hydra : the kernel of a multiprocessor system"

■Communications ACM 17-6 (june 76)

6-12

/9/ R.M. NEEDHAM, R.D.M. WALKER, A.D.BIRRELL
"The CAP system"
Three papers at the 6th ACM Symp. on O.S. Principles (nov. 77)

/lO/ G.B. GOODENOUGH
"Exception handling : issues 4 a proposed notation"
Communications of ACM, (Dec. 75)

711/ R. LEVIN
"Program structures for exceptional condition handling"
Ph. D. Dissertation, Carnegie-Mellon University, Pittsburgh (June 77)

712/ F. CRISTIAN
"Le traitement des exceptions dans les programmes modulaires"
Thfese de docteur ingenieur, IMAG Grenoble (Sept.79)

7137 B.H. LISKGV, A. SNYDER
"Exception handling in CLU"
IEEE Transact, of Software Engineering, Vol. SE-5, n° 6, (nov. 79) |

7147 . K 3.P. BANATRE
"Control transfer disciplines for exception handling"
IFIP Working Conference on "Reliable Computing and Fault Tolerance in the 1980's", London,
(sept. 1979)

7157 C.A.R. HOARE ~
"Monitors : an operating system structuring concept"
The Queen's Univ. of Belfast, Com. ACM 17-10 (Oct.74) i

7167 • ' N. WIRTH
"Programming in Modula-2"
Springer-Verlag, Berlin Heidelberg, New-York 1982

7177 3. VERH0F5TAD •
"Recovery techniques for data base systems" ' - '■ \ ' ■
ACM Computing Surveys, vol. 10, n°2 (June 78) ,

7187 B. RANDELL J
"System structure for software fault tolerance" "■:
University of Newcastle Upon Tyne, IEEE Trans, on Software Engineering, (Oune 75)

7197 D.L. RUSSEL
"Process backup in producer-consumer systems" '
Proc. Symp. on O.S. principles, operating syst. rev. 11,5 (Nov. 77)

7-1

OPTIMAL DETECTION OF SENSOR FAILURES IN FLIGHT CONTROL SYSTEMS
USING DETERMINISTIC OBSERVERS

by
Norbert Stuckenberg

Institut flir Flugfiihrung, DFVLR, Flughafen
D-3300 Braunschweig-Germany

SUMMARY

A failure detection scheme for sensors of a flight control system is presented. Based on analytic
redundancy a duplex sensor configuration provides the fail-operational capability of a conventional
triplex sensor system. This is achieved by using deterministic observers. It is shown how the performance
of the failure detection scheme can be determined. With respect to this performance criterion the optimal
observer is derived. Thus, the performance eventually achievable by an optimal failure detection scheme is
also described. The operational feasibility of the proposed concept is demonstrated by flight test
results.

1. INTRODUCTION

Reliability plays a vital role in flight control systems of today and in those of the future.
Particularly the most attractive control concepts such as artificial stability for the enhancement of
maneuverability and flight economy require control systems of extremely high reliability. Traditionally
this requirement is fulfilled by using multiple devices in the vital parts of the control systems. For
example, it is necessary to triplicate the hardware and to add a majority voting mechanism in order to
achieve a fail-operational capability.

However, it is obvious that the conventional hardware redundancy has many disadvantages due to costs,
weight, volume, energy consumption, failure rates and maintenance costs. Therefore it is reasonable to
look for alternative methods which reduce the necessary efforts in hardware without loss of reliability.

For the sensor part of a flight control system a starting point for the reduction of hardware is the
fact that the signals which have to be measured are output signals of one single plant. The plant itself
is given by the aircraft motion described by the flight mechanics equations. As analytically given by the
equations, the plant outputs are internally coupled. These relations can be used for reliability purposes.
Herewith, the hardware redundancy can be replaced by the so-called analytic redundancy.

The basic tools for utilizing the analytic redundancy are filters and observers. Their algorithms have
to be implemented into the signal processing part of the control system. Thus sensor hardware is replaced
by computer software.

In recent years several methods have been developed following the described common idea on different
ways |1|, |2|, |3|, |4|, |5|, |6|. In this paper a concept |6| is proposed omitting the third sensor of a
triplex sensor system. Nevertheless, the fai1-operational capability is to be maintained. This is achieved
by analytic redundancy performed in deterministic observers.

2. SYSTEM OVERVIEW

2.1 The closed loop control system

Fig. 1 shows the general structure of the complete system partitioned into the closed loop control
system on the one hand and into the failure detection on the other hand.

The closed loop control system consists of the plant, a duplex sensor configuration, a sensor
switching device and the controller. The plant is given by the flight dynamics of the aircraft, forced by
the control signals and the disturbances such as air turbulence. The output of the plant is defined such
that the resulting vector y contains as much information about the plant state as it is needed for the
control problem. The output signals are measured by sensors which are put into a duplex sensor
configuration resulting in two identical sensor packages (SP). Hence, either SP includes one sensor of
every sensor type (ST). As far as no sensor failure occurs the resulting two measurement vectors z, and z^,
are identical.

These two sets of measurement signals are fed into a controller via a sensor switching device. In this
device the output signals of a failed sensor is cut off. Output signals of good sensors only can pass.
This is shown in fig. 1 for a sensor type i according to the following scheme:

No sensor failure: The sum of both sensor outputs z., and z., multiplied with the factor 0.5 is fed to
the controller. ' ^"^

Sensor i in SPl Only the signal z.„ of the corresponding good sensor of SP2 is fed to the controller,
failing: ^'^

Sensor i in SP2 Only the signal z., of the corresponding good sensor of SPl is fed to the controller,
failing: ^'

This scheme applies to each of the existing sensor types (in fig. 1 shown for ST i only). The switch
command signal is generated within the failure detection logic as part of the failure detection.

7-2

The controller is supposed to be designed such that the closed loop control system meets the usual
requirements, i.e. good response to command Inputs and an effective suppression of disturbances over a
certain area of the flight envelope.

2.2 The failuredetection

The failure detection part of the complete system shown in fig. 1 consists of two identical
deterministic observers and a failure detection logic. The observers operate in the usual way. A
mathematical model of the plant is driven by the control signals already mentioned as input signals to the
real plant. The output y of the model is an estimate of the real plant output y. The difference vector
between the measured output z, (or Zj, resp.) and the estimated output y, (or y„ resp.) in this paper
called the observer difference is fed back to the plant model via the observer gain matrix.

The two observers shown in fig. 1 are used to provide the information about whether a sensor has
failed in SPl or SP2. This capability is evident from the following state equations. ,

Let the plant be given as the linear system in the usual notation:

X = Ax + Bu + w

y = Cx

Failures defined as additive signal vectors v, and v„, respectively are given as:

z-i = y + v^ = Cx + v-|

Zp = y + v„ = Cx + V-

Given an observer gain matrix K the state equation of observer 1 is:

x^ = Ax, + KCx + Kv, + Bu - KCx,

and of observer 2:

1
t

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

9.^ = AX2 + KCx + Kvj + Bu - KCXg

Using the estimation errors defined as:

m, = X - X,

m- = X - Xj,

the observer dynamic is reduced to the state equation:

(2.6)

(2.7)

(2.8)

m, = (A - KC) m, - Kv, + w

n^ = z^ - y^ = Cm^ + v^

and with respect to observer 2:

m„ = (A - KC) m- - Kv„ + w

n^ = z- - y~ = Cm„ + v-

(2.9)

(2.10)

(2.11)

(2.12)

Equations (2.9) to (2.12) show that the failure vector v, affects the difference signal n, of observer
1 only whereas the failure vector v- correspondends to the observer difference n„ only. Secondly, the
influence of the disturbance vector w is identical in either observer difference. Since this disturbance
influence is supposed to be limited, the maximum disturbance response can be used as thresholds for the
failure detection task in the following way.

Given are the thresholds n.-j- of each element n., and n.„ of the vector n, and n„. If one or more
elements n.^ of observer 1 increase beyond their respective Thresholds n.-j-, it is certain that a sensor
failure hai occurred in sensor package 1. Equivalently an occurrence ofM sensor failure in SP2 can be
seen from the response of the observer difference vector n^.

The final localization of a failed sensor within the SPl (or SP2) is accomplished by the simple
comparison between the output signals of the corresponding sensors of the same type. This part of the
failure detection is identical to that used in the conventional hardware redundancy concepts.

Based on these relations the failure detection logic is defined by the following statements:

Iz. il z.^l 4 0

'"ll ' ^ "IT' ^ ' '"21 ' ^ "2T'^'

'"12' > "IT' ^ * '"22' -^ "2T'"^'

sensor failure in ST i

sensor failure in SPl

sensor failure in SP2

(2.13)

(2.14)

(2.15)

7-3

Using these statements a failed sensor is clearly localized. Then, switch-off actions are taken as
described in section 2.1.

In conventional applications observers are used to provide additional information about the plant state
in order to improve the control performance in a certain optimal way. Differing from those systems which
integrate the observer into the closed loop the present concept uses the observer in an open loop
configuration. This offers the opportunity to attach at either sensor package further observers in
addition to the single one represented in fig. 1. These additional parallel observers would support each
other with respect to their common failure detection task.

Up to now the derivations have been made assuming that there are no deviations between the plant and
the plant model inserted in the observers. However, in the real world deviations always exist. In the
proposed concept these model errors act in the same way as the disturbances considered so far, again due
to the fact that the observers operate in an open loop configuration. Hence, limited model errors have a
limited effect on the observer differences, too. For instance, they do not yield instabilities as they
could do if an observer is used within a closed loop configuration. Consequently, in the remainder of this
paper the disturbance vector w is supposed to include both the real external disturbances and the inner
disturbances due to model errors.

3. THE FAILURE DETECTION PERFORMANCE OF A GIVEN OBSERVER

3.1 Performance definition

The task of the concept described is to guard the control system against the effect of sensor
failures. The statements of eq. (2.13) show that in principal it is no problem to identify the type of the
faulty sensor. However, it is the intrinsic problem of the proposed concept to indicate whether SPl or SP2
contains the faulty sensor. This is due to the nonzero thresholds of the observer differences which result
in the possibility of a sensor failure also reaching large values until being identified in one of the
sensor packages. This means that the control system can undergo deviations from its desired path, too.
Hence, it is obvious, also from fig. 1 and from the state equations, that a sensor failure causes two
competing effects:

- The closed loop control system can be driven away from the desired nominal trajectory.

- At least one of the observer differences of the respective observer is driven beyond its threshold, by
that indicating the faulty SP.

For a given system, i.e. a control system with given feedback gains and observers with fixed observer
gain matrices, the identifiabil ity of a sensor failure depends on the one hand on the magnitude of the
disturbance thresholds and on the other hand on the magnitude and the signal character of the sensor
failure itself. For both signals worst-case assumptions have to be adopted. As far as the disturbances are
concerned, the worst-case requirement is already fulfilled by defining the disturbance threshold as the
maximum disturbance response. As far as the sensor failure itself is concerned, no assumptions and
preconditions of any kind are permitted. The identification system has to cover all kinds of sensor
failures, particularly the most unfavorable one. This worst-case failure signal is the one which causes a
great deviation in the control system output and has a low sensitivity with respect to the observer
differences. Thus, the performance of the detection system with respect to a failure in a certain sensor
has to be defined using the following value: The maximum response of a control system output due to that
failure input which is not able to drive one of the observer differences beyond its threshold. The lower
this particular deviation of the control system the better the detection performance.

3.2 Transformation to an optimal control problem

Now, the performance of the failure detection has to be calculated. According to the previous section
it is necessary to weigh the sensor failure response in the control system and the sensor failure response
in the observers against one another.

These two competing relations can be derived from the following concise representation of the relevant
state equations.

A - KC

BRC l/gCBR).
(3.i:

n. = C.m + V.

n . = C^m

^k = C^x

, j + i

, k = i,j

(3.2)

(3.3)

(3.4)

In this representation the control law of fig. 1 is chosen to be a linear feedback given by the gain
matrix R. Furthermore, these equations apply to failures v. from either SP. Consequently, the indices 1
and 2 for identifying the two SPs and the two observers are omitted. Henceforth, an index identifies the
element of a vector or the row (column) of a matrix respectively. A block diagram representation of equ.
(3.1) to (3.4) is given in fig. 2a. Using this figure the worst-case sensor failure as input signal to two
separate systems will be discussed. Once the disturbance thresholds n.-j. and n ..j. are fixed, the worst-case

7-4

failure input v
under the cons
thresholds.

V. is that signal which forces the control system output y. to the maximum response y.
traint that the simultaneously forced observer differences n.^ and n .^ remain within tn???^

Though forced by the common input signal v. the direct relation between the output signals of two
separate systems is essential for the determination of the detection performance. This direct relationship
can be derived by proceeding from the common description of the two systems in equ. (3.1) to (3.4). The
output equ. (3.2) is transformed into ,

and

n. - C.m (3.5)

V. used in equ. (3.1) again. VJhat results is a transformed system

A - KC + K. C.

1/2(BR). C. A - BRC l/2.(BR).j

(3.6)

n . = C .m
J J j + i

y,^ = C|^x , k = i,j

(3.7)

(3.8)

The output n^ of the original system is now defined as the input of the transformed system. This is
possible since in the output equ. (3.2) the input v. was contained in a direct superposition. The
equivalence of both representations also becomes apparent from the block diagrams shown in fiq. 2a and
fig. 2b. , . ,

The problem of the greatest effect of a sensor failure which is still just undetected can now be
described more simply with the aid of the block diagram of the transformed representation: What is sought
is the maximum value of an output y|^ which can be generated by the now limited input n.. Within the
limitation n.^ the input signal n. can assume any given signal behaviour. Additionally, the ^ther observer
differences r'l. have to be kept within their respective limitations n.^. The time for reaching the maximum
value y, is unlimited. J'

Thus, the problem of the greatest effect of an undetectable sensor failure and with it the failure
detection performance is reduced to an optimal control problem. The solution methods known for problems of
this nature can be applied. Since for such problems the solutions cannot be stated in the form of complete
formulae usually they must be found specifically for each case. The solution process for a concrete
example is carried out in |6|. Only the principal characteristics of a solution will be stated at this
point.

3.3 The worst-case failure signal

For a qualitative example fig. 3 shows the optimal time histories which lead to a maximum value y,
given an input n^ which is constrained by the threshold n.-,. For a system with a limited input the optTi^il
control theory (maximum principle) requires positive and I'legative maximum values as input signals. Hence,
the rectangular function n°^ in fig. 3 is found to be optimal in terms of optimal control. I.e., from the
failure detection point of view it is the most adverse one. The switching instants are determined by the
switching variable q alternating its sign. The system output y, is forced by the optimal control signal
n°^ to reach the maximum value when the final time t^ goes to irfrinity. However, in pratical applications
t^ remains finite. As it can be deduced from optimal control theory the optimal input signal n°. is not
periodic for systems of an order >_ 2. Again, in practice the rectangular function n°. oscillaies with
nearly constant frequency. ''

Once the worst-case input n°. and its response m°. of the transformed system of fig. 2 is determined,
the equivalent worst-case failure signal v°. itself ii given by the relation

C.m°
1 (3.9)

It turns out to be a discontinuous function as shown in fig. 3. In terms of the original system
representation of fig. 2 this input signal v°. would create the greatest response in the output y, of the
control system without the respective observer difference n. exceeding its threshold n.

T ^ iT

In fig. 3 the threshold n ... of the other observer difference n. was not effective since the signal n.
remained within this limitatirin. However, given a threshold n ., loiJer than the maximum values of n. showri
in fig. 3 the most adverse solution has to shift. As derived" in |61 the worst-case failure signal v. is
determined now such that the observer difference n. becomes a rectangular function with a shiHed
frequency. This new switching frequency is defined such that the other observer difference n. just reaches
its threshold n.-j.. The maximum values + n.-j- of the rectangular observer difference n. are'^ retained. Of
course, the maxttnum output y, of the control system is smaller now, i.e. the performance of the failure
detection has improved. ™^^

A chance to lift the performance furthermore can be used by attaching an additional filter at the
observer difference n. as illustrated in fig. 4. The filter output n.,- is implied into the failure
detection procedure in'^the same way as the original observer differences rl. and n. are. The filter itself
has to have a sensitivity with respect to the just discussed frequency. But '?t is as insensitive as
possible at other frequencies. Hence, it can be assumed that the response to disturbances is small. Thus,

7-5

the new threshold n .p^ defined as the maximum response to these inputs is small, too. The worst-case
failure signal v^ ha'i to be changed again in such a way that the filter output n^^ also just reaches its
threshold n-p-j-. Consequently, the maximum output
failure detection has been improved.

'kmax of the
filter output n.p
control system iia nas decreased, i.e. the

Let the system matrix (A - KC + K.C.) be unstable such that the response C^ra to even small inputs n^
becomes large. Then, also the controf System output y, is forced to large values via the element (BR)..
This critical situation however cannot occur if via the system matrix (A - KC + K.C.) the output n. is
driven to high values, too. Because this signal n. has to remain within its threshold h.-j. the signals^ C.m
and y, are also kept on a lower level. However,'^in this case it is necessary that a"^ sufficiently high
coupling exists between Cm and n.. In other words, the output C.m has to be observable from the output
n.. Hence, it is a matter'' of the'^uncontrol led plant, i.e. the system matrix A and the output matrix C.
TJIeir properties eventually define the range of applicability of the proposed concept.

4. THE OPTIMAL OBSERVER SUBJECT TO THE SENSOR FAILURE DETECTION PROBLEM

4.1 Sensor failures, disturbances and performance criteria

In the previous chapter we have analyzed the performance of the failure detection on the condition
that the observer dynamic is given. However, the proposed concept fixes the observer structure only as
shown in fig. 1. The elements of the observer gain matrix are still free to be chosen. Hence, two
principal questions arise:

- How has the observer gain matrix to be chosen in order to yield the optimal observer with respect to the
failure detection task?

- Which is the eventual performance of this optimal observer?

Since the structure of the observer is that of a Kalman-filter, one could think of using its
optimization techniques for the design of the observer in the present case, too. However, a comparison
list concerning the design criteria and further assumptions of the two cases shows that there are
considerable differences.

Kalman-filter Sensor failure detection observer

Sensor fai
(measurement no

lures
ise resp.)

stochastic signal with zero mean,
white noise spectral density
and Gaussian distribution

deterministic, discontinuous,
aperiodic signal according to
section 3.3 and fig. 3

System n oise

stochastic signal with zero mean,
white noise spectral density and
Gaussian distribution

those deterministic and/or
stochastic disturbances which
cause the maximum response of
the observer differences

Performance criterion
1

minimum mean-square-error between state
and estimated state

minimum amplitude of a control
system output due to a not de-
tected sensor failure

Table 1: Comparison of the Kalman-Filter and the sensor failure detection observer

This comparison given in table 1 shows that the design of the observer as a Kalman-filter cannot be
optimal with respect to the sensor failure detection task. As far as the measurement noise is concerned',
the two signals differ not only in the way they appear but also in the way they are determined. In the
Kalman-filter case the measurement is an independent signal whereas in the present case the sensor failure
is dependent on the observer dynamic itself as was found in chapter 3. Thus, under these difficult
conditions it seems to be almost impossible to find the observer gain matrix without easing off the strict
assumptions given in table 1.

Hence, a suboptimal solution is sought by replacing the assumptions stated in table 1 by the following
approximations.

7-6

Sensor failure signals:

Fig. 3 has shown that in practice the worst-case failure signal v°. can be assumed as a periodic
signal. Furthermore, its discontinuities ought to be neglected. Thus, the approximate worst-case failure
signal shall be determined as a stationary harmonic signal. Its frequency cannot be determined yet because
at this point of the considerations it is still a matter of the observer dynamic. 4

Sytem noise: . . ■■' 1

The deterministic part of the disturbances is approximated by a harmonic signal. As far as the
stochastic part is concerned it is assumed that it can also be approximated by an equivalent harmonic
signal. The justification will be given in the next section when the frequencies of both the sensor
failures and the disturbances are determined.

Performance criterion:

The ampltiude of the failure signal just not detectable by the observer shall become as small as
possible. This is a slight modification of the performance criterion used in the previous chapter.

Now, the overall design procedure of the observer can be considered as a two step approach. First, the
optimization can be carried out according to the approximations given here. Secondly, the final
performance of the failure detection has to be assessed on the basis of the more rigorous conditions
established in chapter 3.

4.2 The failure signal frequency

In the foregoing section it has been shown that the optimization of the observer is a deterministic
problem. Both the failure signals and the disturbances are supposed to be harmonic signals. The frequency
of the sensor failure signal has to be determined under the constraint that the relationship between the
failure signals and the observer dynamic covers the most adverse conditions. Let us now discuss this
problem by using an example based on a second-order system.

For a 2nd-order system the failure detection problem is reduced to the block diagram represented in
fig. 5. In this example the following assumptions are established:

- The output matrix is the unity matrix: C = I

- Failure in sensor 1: failure signal v,

- Failure detection at observer difference n„

Thus, the respective state equation becomes:

"m;

nio

= A - K
m/

- h ^ +
W2

(4.1)

The disturbances w, and w^ are independent signals. Hence, it is sufficient to carry out the
derivations with respect to the signal w^ only and to apply the results to the other signal w- thereafter.

From equ. (4.1) Laplace-transformed transfer functions can be derived:

Sensor failure response:

si - (A - K)
n2(s) = -t adj v^(s) Z^(s)

det (si - (A - K)"\

Disturbance response:

si - (A - K)
n2(s) = — adj

W, (s)

det (si - (A - K)\

N(s)

w

N(s)

v,(s) (4.2)

w, (s) (4.3)

Now, the input signals are assumed to be harmonic oscillations. The respective frequencies" and u
are first assumed to be arbitrary but distinct, i.e.: v w

0) ^ bi
V w (4.4)

7-7

The amplitudes of the stationary harmonic response of the observer difference ng are:

and
lN(j(.^)|

In equ. (4.6) it is also stated that the stationary amplitudes ^2(0^^)I representing the maximum
disturbance response have to be defined as the threshold n^-r.

The detection of the harmonic failure v, is established as soon as the harmonic failure response
|np(jiii)| reaches the threshold n^j, i.e.:

|n2(j"jl = n^^ (4.7)

Using equ. (4.5) and equ. (4.6) in equ. (4.7) yields a direct relationship between the disturbance w,
and the just detected sensor failure v, (or the maximum just not detectable sensor failure v,).

|v,(j-)| =-^!^^^ '— Iw,(ja>)| (4.8)
' ' \\ii%)\ |N(J-JI ^

Applying the performance criterion of the previous section the amplitudes |v,(jii))| have to be kept as
small as possible. Equ. (4.8) offers the chance to achieve this objective via the common denominators
Niji^) and N(ju)) of the transfer functions given in equ. (4.2) and equ. (4.3). If the eigendynamic of the
obset^ver is chosen like that shown in fig. 6 then the fraction !N(jui) |/|N(ju^) I in equ. (4.8) becomes
arbitrarily small. In physical terms: The observers sensitivity with respect to sensor failures is chosen
as much higher than that with respect to the disturbances.

Fig. 6 also demonstrates the favorable effect of a bandpassfilter already suggested in section 3.8 and
fig. 4. This filter suppresses the effect of the disturbances and further amplifies the effect of the
sensor failures.

However, the filter effects just described are successful only if, actually, the frequencies of the
sensor failures and the disturbances are distinct as presumed in equ. (4.4). Now, it has to be recalled
that the observer system has to be able to operate under the most adverse conditions. From fig. 6 it is
obvious that this case is given if the two frequencies coincide, i.e. if

w (4.9)

Under this constraint the detection of sensor failures is no longer performed via the observer
eigendynamic because the denominators of the two transfer functions of equ. (4.2) and equ. (4.3) disappear
in equ. (4.8). The failure detection performance can be optimized only by manipulating the remaining
numerators.

At this point it also becomes clear that it is justified to replace stochastic disturbances by an
equivalent harmonic signal since the latter represents the more difficult problem from the failure
detection point of view. The broad power spectrum of a stochastic signal could be covered by one or more
parallel bandpassfilters in the way demonstrated in fig. 6 such that a high failure detection performance
results. On the other hand a narrow power spectrum can be approximated by a harmonic signal as proposed in
section 4.1.

From the discussion presented it follows that first, an observer has to be optimized under the most
difficult conditions of coinciding frequencies. The resulting failure detection performance is the crucial
one. Secondly, other failure frequencies possible are covered by bandpassfilters or by another parallel
observer provided with an eigendynamic like that shown in fig. 6. This case will not be considered
furthermore since the respective detection performance is always higher than that of the crucial case.

The foregoing derivations have been made with respect to the first disturbance signal w, of a
2nd-order system as used in equ. (4.1). Obviously, there is no problem to apply the principal results to
the disturbance signal w„, too, or to further input signals when a system of higher order is given.

4.3 The optimal observer

The optimal observer provides the best performance, i.e. the smallest not detectable sensor failure
under the worst conditions described in the previous section. Also the value of this ultimate performance
achievable is of interest. Again, the problem will be solved based on a 2nd-order system first. Then, the
results are generalized with respect to higher order systems.

Let the example be given as represented in fig. 5, i.e.:

- Second-order system

- Failure in sensor 1: failure signal v,

- Failure detection at observer difference n„

Given the constraint of equ. (4.9) the relationship between the sensor failure v, and the disturbances
w, and viy in Laplace-transformed representation becomes:

det I [(si - (A - K))]^

det < [(si - (A - K))]^

(4.10)

Using an elementary determinant transformation equ. (4.10) becomes in detail:

det <^n - hi' ;«ii
(a^i - k^i) IwJ

(4.11)

det

21

hi' :
'21'

'11

^21

It should be noted that these dynamic relations between the sensor failure and the disturbances are
not dependent on the second column K„ of the observer gain matrix K. In more general terms: The gain
matrix column corresponding to that observer difference performing the failure detection does not affect
the failure-disturbance relations.

Developing the relation of equ. (4.11) into the transfer functions (v,/w,)(s) and (v-,/w^)(s) one
obtains:

v^(s) = [—^j (s) w^{s) + (s) W2(s) (4.12)

The disturbances w, and w„ have to be considered as independent signals. Therefore, when minimizing v,
the two portions in equ. (4.12) have always to be added. Fortunately, this condition is fulfilled by
applying harmonic signals again. By that the transfer functions turn over to Bode amplitude plots which by
definition represent positive values only.

Now, the harmonic, stationary amplitudes of the sensor failure v, as response to the harmonic inputs
w, and w~ have to be minimized by modifying the column K, of the observer gain matrix K. Using the
abbreviations

ij iJ TJ

two limiting cases can be identified.

(4.13)

Case f,, >> f„i ;

The amplitudes v, due to the disturbance w, tend to zero, i.e.:

V,
1 nm

hi '' ^21

'1

w
C^) = 0

(4.14)

However, at the same time the response due to the disturbance w„ tend to a limiting amplitude plot as
shown in fig. 7a. This means that in practice for finite frequencies a limit is given by:

1 im

hi'' ^21

(CO)

'21
(4.15)

Case ^21^^ hi-
a

This case is the reverse to the previous one. As shown in fig. 7.b the first sensor
failure-disturbance relation (v,/w,) tends to the limiting amplitude plot of the transfer function
^/{s-a,-,), i.e.: ' '

^21 '' hi

(0))

1

jij-a 11 (4.16)

7-9

whereas simultaneously the second relation tends to zero, i.e.

V,

lim

^21 >^ ^11

'1

Wo

{<^] = 0
(4.17)

These results are summarized and schematized in table 2

^11 ^21
f >> f
^21 Ml

limf^^ 0
1

\ wW s - a^^

lim(^^
1

0
\ Wg/ ^21

Table 2: Limits of the sensor failure-disturbance relations of a 2 nd-order system

Table 2 demonstrates that, obviously, it is not possible to bring both the relations down to zero
simultaneously.

Two results should be emphasized:

- The sensor failure-disturbance relations are independent of the column K^, that is the column
corresponding to the observer difference which is supposed to yield the failure detection.

- The result of the optimization process, i.e. the optimized sensor failure-disturbance relations, is
entirely independent of the observer gain matrix but determined by the column A, of the plant matrix A
only. This column A, corresponds to that sensor which is affected by the failure.

4.4 Generalizations

The results derived in the previous sections with respect to a 2nd-order system are now generalized
without proof and applied to a system of higher order.

Consider the following assumptions:

- Plant system matrix: A . i ^

- System order: n

- Failure in sensor i: v.

- Failure detection at observer difference n.

Then, the following limits of the sensor failure-disturbance relations are possible:

W.
V V ■■■ • V

Mi ^2i s-a.
V ■■ . .V (4.18)

Given the amplitudes of the above disturbances the smallest value of the quotients offered in equ.
(4.18) can be elected. This value represents the eventual failure detection performance achievable, i.e.
the smallest amplitude of the failure signal v. just not detected. The frequency of this failure signal is
identical to the frequency of that disturbance signal elected from equ. (4.18).

In order to achieve this final result the observer gain matrix has to be chosen similarly to the cases
discussed with respect to a 2nd-order system. Again, the column K. corresponding to the failure detecting
observer difference n. is not available to this optimization procedure.

However, this observer optimized with respect to a good failure detection performance is not
necessarily supposed to be optimal from the conventional design point of view since its eigendynamic has
not been a matter of consideration so far. But from a practical point of view the eigendynamic cannot be
neglected. For instance, a poor stability though not affecting the stationary sensor failure-disturbance
relations is of no use. Hence, at this point the column K. of the observer gain matrix K can be used
finally in order to establish a good eigendynamic. ''

7-10

5. APPLICATION TO A COMPLETE FLIGHT CONTROL SYSTEM FOR A TRANSPORT AIRCRAFT

The failure detection concept was applied to a given flight control system for a transport aircraft.
The objective of this experiment was, first of all, to demonstrate the operational feasibility in a
realistic environment. Hence, it was not necessary to lay emphasis on the observer design as the optimal
one described in the previous chapter.

5.1 The flight control system

Fig. 8 shows a simplified block diagram of the flight control system assigned to the failure detection
experiment. The objectives of this control system are on the one hand a good response to the command
signals defined as the command vector.

altitude command H c

speed command V (5.1;

bank angle command ♦ ' c

and on the other hand a sufficient suppression of the disturbances w.

A good command response is achieved essentially by a careful design of the feedforward signal path,
given a well damped eigen behavior of the closed loop system by choosing reasonable feedback gains. Then,
this latter property provides also for a sufficiently low disturbance response.

In order to achieve these design objectives it is necessary, first, to control the plant by the
control vector u defined as ,.

elevator deflection n

thrust F

aileron deflection \

rudder deflection 5

(5.2)

and, secondly, to get the information about the plant state via the measurement vector z, defined as

yaw rate r

roll rate P

pitch rate q

bank attitude <t>

pitch attitude 0

vertical speed H

altitude H

indicated air speed V

lateral acceleration a

IAS

(5.3)

This flight control system is successfully flight tested with the DFVLR experimental aircraft HFB 320.
A detailed description is given in |7|.

The feedforward control loops are independent of the measurement. Hence, they do not interfere with
the sensor failure problem. On the other hand the signal path from the measurements via the feedback law
to the control vector u is of particular interest for the sensor failure problem and its solution, since
via this loop sensor failures have an effect on the plant.

5.2 The test arrangement for the generation, the detection and the isolation of sensor failures -.

The failure detection scheme needs a duplex configuration as represented in fig. 1. But in the
experimental flight control system only a simplex sensor system was available. Therefore a slight
modification of the original concept became necessary for test purposes. This is shown in fig. 9.

A single sensor package was used for the flight control test program. All measurement signals combined
into the measurement vector z are splitted up into two separate signal paths. Into either path additive
signals can be fed represented by the vectors v, and v„. Thus failures in sensors of the original two
sensor packages are simulated by software. The remainder of the original scheme was not changed.

The intrinsic purpose of the experiment, i.e. the indication in which of the two sensor packages a
failed sensor is located, can still be achieved. Only the indication of the type of the failed sensor
operates in an unrealistic condition. But as already mentioned this indication implies no innovative
aspects since it arises in the conventional hardware redundancy concepts, too.

7-11

Fig. 10 shows in detail the arrangement of the sensors and the internal structure of the observers as
it was used in the flight tests. For clarification purposes observer 1 and the signal path of the
simulated sensor package 1 is represented only. The representation of observer 2 and the SP2 is identical
to that shown in fig. 10.

The aircraft motion model used in the observers is nonlinear. This is done in order to keep the
estimated outputs as close as possible to the outputs of the real plant. The nonlinearities consist of

- the coupling between the longitudinal and the lateral motion

- some quadratic terms depending on the dynamic pressure

- the thrust depending on Mach number and static pressure.

The differences between the measurement signals and the estimated outputs are fed back to the plant
via the observer gain matrix. Going beyond this concept shown in fig. 1 and described in the original
observer/filter literature additional integral terms are fed back, too. This is done in order to cancel
possibly stationary deviations in the respective observer differences completely. The implementation of
these integral elements into the observer structure does not raise any problems either theoretically or
practically. The observer gain matrix itself is chosen as similar to the gains used in the control system.
Though this approach is not stringently optimal as pointed out in chapter 4 it offers some practical
advantages. Detailed reasons are given in |5|.

In fig. 10 additional filters are attached to the observer differences n and ng . These filters
operate in the way generally described in section 3.3 and sketched in fig. 4 and fig. 6, i.e. suppression
of disturbances and amplification of sensor failures. The actual effect will be discussed using some
flight test results.

6. FLIGHT TESTS

Flight tests were conducted using the DFVLR test aircraft HFB 320. First, according to the outlined
concept data about the model deviation and real disturbances effects were collected. In the second part
the operation of the failure detection and isolation was demonstrated when sensor failure signals were
applied.

6.1 Determination of thresholds , .

The observer differences deviate from zero due to model deviations and disturbances. The response to
model deviations becomes high when the control system forces the plant to move dynamically. Therefore,
inputs into all 3 command signal paths of fig. 8 are applied successively:

- altitude command with different descent and climb rates

- indicated air speed commands represented as a deceleration procedure

- bank attitude commands.

Some test results are shown in fig. 11 and fig. 12. They are selfexplanatory to a certain extent. Only
a few features will be discussed.

Fig. 11: The descent rate is 800 ft/min, the climb rate is 1500 ft/min. Though during the maneuver the
plant moves considerably in altitude H, vertical speed fl and pitch attitude B the corresponding observer
differences remain small. Only the signal ng shows a certain offset which becomes even clearer in the
output Hgp of the attached low pass filter. This effect may be referred to an unprecise modelling of the
actual thrust.

Fig. 12: During this flight interval an area of heavy air turbulence was sought and found crossing a
strong cumulus.

Based on these data the thresholds for the second part of the flight test were fixed as shown in the
first column of table 3.

6.2 Application of sensor failures

As represented in fig. 9 and fig. 10 sensor failures are generated by feeding additive signals into
one of the two sensor signal paths. This is done successively for each of the sensors of one sensor
package. Because the arrangement of the sensor packages is symmetrical with respect to both the control
system and the observers, sensor failures are applied to the SPl only. The plots of the failure signals
are equal but multiplied with an individual factor given in the second column of table 3. The common
structure of the failure plots is defined in fig. 13. Since the signal character of the sensor failures is
important with respect to their effect on the control system on the one hand and to the failure
detectability on the other hand the plot of fig. 13 is partitioned into three different intervals.

7-12

Observer difference Sensor failure
thresholds factors

n^j = 1.0 °/s k^ = 3 Vs

Hp, = 2.0 Vs kp = 5 Vs

n^j = 1.0 Vs \ - 5 Vs

\j - 2.5 = k* = 10 °

"GT = 1-0 ° ke = 3 °

nf^^ = 2.0 m/s k|^ = 5 m/s

riyj = 4.0 m kj, = 50 m

n^-j- = 2.0 m/s k^ = 10 m/s

"ayT = °-5 "i/s^ ^y = 5m/s^

nepT = °-5 ° -

n^P^ = 0.25 Vs -

Table 3: Thresholds and sensor failure factors

Interval "10-60 sec": During this period the failure signal increases on a slight slope, thus simulating a
small drift of the physical sensor.

Interval "60-70 sec": A stationary offset is represented.

Interval "70-80 sec": A steep decrease to zero is simulating a high drift rate. Thus a failure signal
containing higher frequencies is represented.

The sensor failures were applied during a straight level flight in fairly calm air. Thus the effect of
the failures becomesclear because they are only little disturbed by air turbulence or command signals. In
fig. 14, fig. 15 and fig. 16 test results are shown respective to failures in the e-sensor, the
Vj^j-sensor and the p-sensor. In these figures the plots of the most relevant variables are given showing
in the first columns the system responding to the complete failure signal profile without to be interfered
by sensor switching. In the respective second columns the operation of the switching logic becomes
obvious.

Fig. 14: The additive failure signal in the s-sensor clearly shows up in the observer difference no and
similarly in the filter output "g P- ^^^ aircraft motion itself is almost unaffected by this kind of
failure, even during the interval of steep decrease. The failed sensor is detected when the filter output
ngp increases beyond its threshold. At this time the switch command signal appears. At the corresponding
time instant of fig. 14b the switching operations take place actually.

Fig. 15: The application of the failure to the V^^^-sensor shows results which are very much different
measurement in
difference n

tection of s
ring the steep
on the coupling
for the failure
threshold n

from those of the previous failure case. Here, the plant variable Vj.„ follows the faulty
the Vj.g-sensor whereas during the low rate drift interval the corresponding observer
remains close to zero. This means that the observer difference n is unusable for the de-
drift rate failures. It indicates only higher drift rate fail^ures as demonstrated du
decrease interval. But low drift rates have an effect on the observer difference ns based
between speed and pitch attitude within the plant and its model. This relation can be used
indication particularly by the filter output n^p since the previously defined disturbance
is small due to the low pass filtering property. Hence, this filter output activates
operations in fig. 15b.

V ow

*FT the switching

Fig. 15: These plots show an example of a failure in a lateral motion sensor. From a systems theory point
of view this failure case appears to be similar to that of a failure in the s-sensor in fig. 14.

Failures of the remaining sensors can be classified either as similar to the failure of the 0-sensor
(r-, 6-, H-, a -sensor) or as similar to the failure of the Vj.^-sensor (t-, H-sensor). As far as the low
drift in the <*-sensor is concerned, the relation between bank attitude* and yaw rate r is utilized
amplified in the filter output n p. However, for the H-sensor an equivalent relation does not exist.
Hence, drift failures in this sensor must be declared as undetectable.

7. CONCLUSION ■ -• '.

For the sensor part of a flight control system a failure detection concept has been developed. Based
on analytic redundancy a duplex sensor configuration achieves the fai1-operational capability of a
conventional triplex system. Two parallel deterministic observers provide the information about which of
the two corresponding sensors is faulty.

Since sensor failures severely influence the safety of flight the failure detection becomes crucial,
too. Hence, the performance of the failure detection has been determined with respect to the worst-case
failure cases. By using optimal control methods it has been derived that the worst-case failure signals
are precisely definable as deterministic, discontinuous and aperiodic signals. However, assuming harmonic

7-13

failure signals as approximations to those of the exact worst-case the optimization of the observer
subject to the failure detection task becomes feasible. Given this optimal observer, the final failure
detection performance achievable turns out to be eventually determined by the properties of the
uncontrolled plant only.

Flight tests have demonstrated that in principle the failure detection concept is feasible with
commonly used sensors.

8. REFERENCES

HI Clark, R.N.,
Fosth, D.C.,
Walton, V.M.

|2| Shapiro, E.Y.

|3| Deckert, J.C,
Desai, M.N.,
Deyst, J.J.,
Willsky, A.S.

|4| Montgomery, R.C.,
Tabak, D.

|5| Labarrere, M.,
Pelegrin, M.,
Pircher, M.

|6| Stuckenberg, N.

|7| Adam, V.
Leyendecker, H.

Detecting instrument malfunctions in control systems.

IEEE Trans, on Aerospace and Electronic Systems Vol. AES-11
(1975) No. 4, pp. 465-473.

Software techniques for redundancy management of flight control
systems.

Proc. of AIAA Guidance and Control Conference, Aug. 1976.

F8-DFBW sensor failure identification using analytic redundancy.

IEEE Trans, on Automatic Control, Vol. AC-22, 795-803, Oct. 1977.

Application of analytical redundancy management to shuttle crafts.

Proc. of the 1978 IEEE Conf. on Decision and Control, San Diego, Cal.,
Jan. 10-12, 1979.

Automatic recovery after sensor failure on board.

AGARD Conf. Proc. No. 272, Ottawa, Can., May 8-11, 1979.

An observer approach to the identification and isolation of sensor failures
in flight control systems.

ESA-TT-738 (English Translation of DFVLR-FB 81-26).

Control law design for transport aircraft flight tasks.

AGARDograph No. 251.

7-14

DISTURBANCES w

H>

\n>

A/C MOTION

SENSOR PACKAGE 2
(IDENIICAL TO SP1I

)

ATTITUDE SENSOR
SPEED SENSOR

etc.

OBSERVER 2

OBSERVER 1

FEEDBACK

LAW

n
<F-

^Tf-
(-1

0,5

7!
FAILURE
DETECT

LOGIC

OBSERVER

GAINS

MATH MODEL
OF

A/C MOTION

I SWITCH CONTROL _J

Fig. 1: Flight control system with a fail-op duplex sensor configuration

V K| -9-^ /

A-KC I I

I lit

*\J—I"! /TTTTTTTTTT I

.^TTT-rrrTTT

1 t/DDll ^ J_J /■ L ''^
1 1

r
1 2iLJi\;i| '\

' '
^k

1

1—A-BRC—'

Vkma

a: Original block diagram

J."
'^TT^TTT^TTT' K, ►(

m r m c, r—

, ■'

Ci —

LA-KC-KICJ-
1 1
1 1

(— '(RRl-

L-i(RP)._J

i\u\\\\

I X r X
Ck l' ^

— A-BRC

Ciffl
inji

yT777TT7-7~7-77 '

Vkr

Vk

b: Transformed block diagram

Fig. 2: Relationship between sensorfailure v., observer difference n. and
control system output y, ^

7-15

//////////// n:i

Fig. 3: Optimal time histories with limited input signal n.

Yi 6z\ n

39
BANDPASS-

FILTER

Fig. 4: Additional bandpassfilter

7-16

Vl

Wl

/
m.

On -kii

°21 ~ l<21

022 "^22

0,2-k,2

m2 = n2

Fig. 5: Block diagram of a failure detection problem
applied to a 2nd-order system

Fig. 6: Bode amplitude plots of the observer eigendynamic
and of a bandpassfilter

7-17

V, 1
/W2 - 02,

Vl g^ W2

^

^^~^ \

1
^^^

kzi

a: Case f,, >> fp.

V, 1

b: Case fj,, >> f-,.

Fig. 7: Bode amplitude plots of the sensorfailure-disturbance relations

y.--
Hc

Vc

4>c

^

=0 FEEDFWD
CONTROL

COMMAND
MODEL *8

FEEDBACK
CONTROL

u =

^ O A/C
MOTION

r
P
q
<t>
e
H
H
V,AS

_°y _

Fig. 8: Flight control system for a transport aircraft

7-18

PHYSICAL
SENSOR

PACKAGE ;

4 TO OBSERVER 2

TO OBSERVER 1

V
TO FAILURE DET. LOGIC
AND FEEDBACK CONTROL

V.,: Additive signal in sensor i of SP 1 il ^
v.-: Additive signal in sensor i of SP 2

Fig. 9: Software realization of two sensor packages

RATE
GYRO

RAIE
GYRO

RATE
GYRO

►O «-

INERTIAL

PLATFORM
►O

AOC

^►O

ACCELER.

0 =
q -rt

:l
TTT

i-:r

10 CONTROLLER <J=

r-rr
£LU

T ^
U

HrF

np

"0F

T—:r
T—;r'

^n^

=[> TO FAILURE DET. LOGIC

J-

JU

NONLINEAR

MODEL OF

A/C MOTION

y--

Fig. 10: Experimental sensor and observer arrangement

7-19

Im

[kts

nr

l°/sl

C/sl

np

1%]

"e

1%]

"ef

m/sl

m/s 1

m/s'

2.i

•4—+-

_L^_i_ + -

-i 1-

^M >'»» ''iw jArv i^v l^^'H^'^ >V*W

^w<v»*'w^>'^VV^*^>y^-ft^/^^,s,»»^>,^Mjf%^Yv%»^<AA.<^/>w>,

-5.8
2.8

-2.8
5.8

/M*jt<v*tty»v»*-/V«A)>'^wAVftVVWU»^»'V^N^

-le.ea
5.3a

-J.-J.-J.-J.-X-J--X-J.

■ ^ - ^ f—-'4-^ H ■

CLUCVC^'^UCH 92-35

IM

1 «.(

i8.ee

1° 1

ikts:

['Is]

n,F

I "/si

is8.ee

"P

1%)

CVsl

1°)

"SF

:m/s]

ml

:m/s

I m/s'

+ - + - T-^'S-^Li - + - + - +

-+-+-+-+-+-+-+-+-

''^ilV^f^l^

 +-V-+-

N|r+|flV^

^V'WvMf^^
-2.88

/^^f^^^yJbvV^^

"WWMA^AK/^

-2.88

18.88

rAvjM-AVwvwy^vyi

^/V^^vvv*A/^vV'VMA

■-^-JV*''^'"^'^^'v'^''''Wv/\j^^^

FLUCVfRSOCH 82-35
2838 Se MS

Fig. 11: Response to altitude commands Fig. 12: Response to heavy turbulence during
descent including bank attitude
commands

7-20

0 10 60 70 80 s 100

Fig. 13: Common sensor failure profile

I m/s 1

switch

command

i9.ee

272e.(
5.i

+-+-+-+-+-+-+-+-+-+-+

-+-+-+-+-+-+-+-+-+-+-+-

VV*A/V^V♦^'-^*Sy^'^'^'^\^

 I —I
\m i37e M3e M6e

11.18

-+-+-+-+-+-

.ee
273«.99 ^

2729.e8

-+-+-+-+-+-

5.ee

1 I^^^f*^-! 1

-5.ee
5.ee

1 : '"{^'^ 1 - ■

-5.99
2,ee

-2.ee

^M^^,f^^yr-i''iJ\^

le.ee

-ie.ee
i9.ee

.ee

- + - + - + - + - + -

1
.tra 3fm

a. without switching b. with switching

Fig. 14: Response to failures in the e-sensor

7-21

0

1°)

H

(ml

V|AS

(kts 1

ri

le.w

275B.ee

2728.1
25e.ee

2

[m/s

switch

command

-ie.(

+-+-+-+

-4- + - + - + - + - + - + - + - + - + - + -

-I J.-4.-I-4.- + -\^^ i—i (-

//.^ t f t /IJ>

q^^^^"="T=^^^=F^=^=f—-k- -I—• +-

+-+-+-+-+-+-+-+-+-+-+

ie.ee

275e.e«

272«.89
256.89

I5«.9fl
2

-2
18.ee

-is.ee
i8.ee

+-+-+-+-+-

-i__+r +

7?« 2778 2388 2338 2368 II:

a: without switching

Fig. 15: Response to failures in the V..c.-sensor

P

I "/si

r/si

[°/sl

!°1

switch

command

Vv«v^AV^t'^"'"vV^M^VW^^^^^

-ie.ee
5

tu—I V ' u h-trH 1-^ i "uLj^

^;—t--l ■!--

}/>/) f 1///f j r ^ f f

X-l,-\-\-\ + - + - + - + -

3858 3889 3118 3111

a: without switching

Fig. 16: Response to failures in the p-sensor

b: with switching

ii''-''m) '^^*vifaYTvvr<

iMW^'^MAA*^'|fWfy\

v--+T.n;p;-'*'''V'>nr|fr^

77777-?-777-

+ - + - +

^fi>a 4C7fl *n»

b: with switching

8-1

ASSESSMENT OF SOFTWARE QUALITY FOR THE AIRBUS A 310 AUTOMATIC PILOT

R. TROY
VERILOG
Le Peripole
3, Chemin du Pigeonnier de la Cepiere

31081 TOULOUSE CEDEX
FRANCE

C.BALUTEAU
SFENA
B.P. 59

781M VELIZY VILLACOUBLAY
FRANCE

ABSTRACT

As for the whole of the Automatic Flight Control Systein,
the automatic pilot for the AIRBUS is a computer system
with high criticality. In order to assess the quality of the
software, a number of observations and measurements
have been performed during the development cycle. This
paper presents a general method of evaluation, the data
collected, and some evaluation results.

The aims of this analysis are to assess the impact of
development constraints on the quality of the product and
to evaluate its operational reliability. The results show
the conditions in which software may be adversely
affected by modifications. In particular, they make it
possible to appreciate the quality of the design, the
effectiveness of the verification and validation processes,
and the flexibility of the software. The last part gives a
tentative example of operational reliability evaluation,
taking into consideration the complexity of the functions
and the mission profile.

Following a presentation of the project in paragraph 1,
the aims of the analysis are developed in paragraph 2.
These aims concern the impact of development constraints
and the evaluation of operational reliability. The
evaluation method is then described in paragraph 3 ; it
consists of three stages : Observation and Measurement,
Statistical Analysis and Modelling.

The Observations and Measurements are presented in
paragraph <» where a distinction is made between the data
characterizing the product, the development process and
the utilization profile.

Some example of evaluations are given in paragraph 5 in
order to illustrate how it is possible to fulfill the
objectives set in paragraph 2.

1 - CONTEXT OF THE ANALYSIS

1.1. - AIRBUS A3I0 AUTOMATIC
CONTROL SYSTEM

FLIGHT

INTRODUCTION

The Automatic Flight Control System for the AIRBUS
A310 is a computer system with high criticality.

The constraints of Safety and Availability have made it
necessary to use fault-tolerant techniques.

As a majority of the functions are performed by software,
the developments and modifications are controlled by a
production environment.

One important development constraints is the rapid and
continuous change in specifications to which, owing to its
very nature, the software is subject. In order to
objectively appreciate the performance of the production
facilities, the impact of the modification constraints and
the quality of the software resulting an Observation and
Measurement procedure was organized. This paper
presents the assessments resulting from a first
exploitation of these data. The aim of this preliminary
analysis was to show that a judicious collection of data,
complemented by an efficient evaluation method, can
produce significant information which makes it possible to
assess the phenomena affecting the quality of the
product, such as regression in the course of modifications,
the effectiveness of the verification and validation tests,
etc ...

The System under review is an on-board, hardware and
software system which contains six different types of
computers and performs all the Automatic Flight Control
System (AFCS) functions.

'^

Figure I

Distribution of Main Functions :

- FLIGHT CONTROL COMPUTER (FCC)
automatic pilot and flight director with
autoland function.

- FLIGHT AUGMENTATION COMPUTER (FAC)
. pitch trim,

yaw damping,
• flight envelope protection.

- THRUST CONTROL COMPUTER (TCC)
control of speed and maximum engine setting,
maximum engine setting computation.

These three computers have a built-in test and fault
isolation system.

Fault-tolerant Architecture

The design of the systein is governed by two important
requirements : Safety and Availability.

These requirements make it necessary to have a fault-
tolerant architecture consisting of

two independent computing channels based on
asynchronous processors : for the critical functions,
each of the computing channels receives its own
information from outside the computer ;

hardware voters associated with comparators which
detect any discrepancies between the computing
channels.

On a global level, survival after a first failure is provided
by a second computer identical to the first.

1.2. - SOFTWARE LIFE-CYCLE

The majority of the system functions are performed by
software. In total, the programs represent 230 Kbytes
written 60 % in high-level language (PLM 86) and itO % in
assembler language for the 8085 / 8086 microprocessors.
The software development process is divided into eight
phases : external specifications, preliminary design,
detailed design, production, individual tests, integration
tests, software verification, validation-.

For each phase, there is a verification of the products
resulting from it. The development of the first software
version was accomplished in 10 months (from October 80
to September 81) by a team of 'tO engineers and
programming analysts. This phase was followed by an
intensive modification cycle lasting IS months.
Commercial exploitation started in March 1983 with the
airlines LUFTHANSA, SWISSAIR and KLM. At the present
time, the system has accumulated a total of 6000 flight
hours.

FLIGHT CONTROL COMPUTER

Ppocessor 1

Ouiui loop
coinpumttofi

1

Inner loop
1
^ Puwei Jfii(>. ♦

Sen&cxS
AP iervos T

1 Z 1
Oilier toof)

cumpulatioci
(la.Kt ix.ly)

Inner loop

coiMpiitaliun

^~\^ 1
;

ocp,

ANALOG

i
i

1 ^^
1 Dl GITAL P.ocessor 2 1

1
1

5

FCU
?

t
!
T

1].

Outer loop

computation
cruiSG dnd lanrf)

Processor
1

Inner loop

computation

,
V^^ '"/* J

Sensors
2

—^ I

■
AP s.,.os

Ouiei loop

cofnpuiaiion
(land only)

Inner loop

compulation

^\^ 1
1 1 V^

ANALOG

1 %
Dl GITAL Proce ISO 2 1

1
FLIGHT CONTROL COMPUTER

Figure 11

8-3

Development Constraints

Not all the data required to establish the final
specifications are available right at the start of an
avionics software project (aircraft modelling for
example). Consequently, the rapid and continous change
of operational specifications represents an important
feature of SFENA softwares. It involves a succession of
modification sequences motivated both by specification
changes called Development Change Requests (DCR) and
by the correction of errors found during validation.

The following diagram represents the production of
successive software versions. A distinction can be seen
between the versions produced during integration, which
are shown as I,-,, and the versions produced as a result of
modifications, which are show, as Vp ; n represents the
number of the version.

sequences the following operations :

. call-up of basic processors (MODIFY,
compilers, link editors, memory image
constructors) ;

. generation, for each operation, of an "error
log" file ;

. production on the console of an echo of the
operations performed ;

. computing and checking of the file signatures
obtained at all levels ;

. update of the software nomenclature.

XTRSION I^ VERSION V

SFE.NA Aerospacial
Validation

o
Int^gracion of
nev Funccions

SFENA
Validation

Modification
and possible
Integration

JVer

■o
VSRSION W_

Figure 111

while its aim is to improve the operational performance
and quality of the software, special attention must be
paid to the modification process as it may have the
opposite effect to that desired. In particular, it may lead
to a premature regression of software performances if the
design principles and development facilities are not
suitable for it.

Software Production Environment

The software production environment set up to meet the
requirements mentioned above consists of processors
developed by SFENA on INTEL systems. Without going
into a detailed description, two of these processors have a
particularly important role :

- the modification processor : MODIFY

Program modifications are implemented from the
source texts of the modules in the current version. In
order to avoid direct handling of the source texts,
modification items are constructed containing : the
reasons for modifications, a limited number of
instructions (add, delete, replace) applicable to the
numbered source lines, and descriptive commentaries.
The modification item represents the difference
between two successible versions of an element. The
new source text is generated by MODIFY.

The software production processor : MODGEN

This processor makes it possible to sequence all the
operations required to obtain an executable code.
During the integration of a software or the production
of a new version, it automatically

2 - AIMS OF THE ANALYSIS

This analysis is aimed at two different objectives :

2.1. - ASSESSING THE IMPACT OF PRODUCTION
CONSTRAINTS ON PRODUCT QUALITY "

As in any industrial field, custojner/supplier relations are
subject to the constraints of lead-times, incorporation of
modifications, etc. It is of course impossible to assess the
impact of these constraints in an absolute sense, as this
would assume that we would be able to cancel them out in
order to have a reference ; on the contrary, the declared
aim of these assessments is to achieve higher
performance in proportion to their intensity. In
consequence, it is assumed that these assessments will
make it possible to appreciate the degree to which the
SFENA production facilities are suited to these
constraints, thereby revealing the critical points in the
development cycle.

2.2. FORECASTING OPERATIONAL RELIABILITY

The static characteristics of softwares (complexity) and
their behavior as observed during tests provide input data
for the models which make it possible to evaluate and
forecast the operational reliability. (MUS, 80), (LIT, 81),
(CHE, 80). These models introduce objective elements for
deciding to stop a test, defining a test policy, providing
the resources required to achieve a reliability objective,
etc ...

Because it is implemented in the industrial field, this
analysis has the advantage that it permits a concrete
evaluation of the applicability of such models.

3 - METHOD

Given the declared aims of the analysis, the problem to be
solved is to establish :

the variables which give information on the
phenomena to be studied ;

the laws governing the development of these variables.

8-4

The solution to this problem is of the type which must be
based on a procedure containing the following main
stages : Observation, Statistical Analysis and Modelling.

Observation makes it possible to acquire the necessary
data specific to the analysis.

The Statistical Analysis is on two levels :

the descriptive analysis which reveals the
observable phenomena and makes it possible to
determine the variables which give information ;

the exploratory analysis which compares
different phenomena in order to suggest and
establish the relationship between cause and
effect.

The Modelling establishes the laws, either empirical or
theoretical depending on the outcome of the
exploratory analysis, which govern the development of
the variables (or phenomena) and provide the means of
appreciating the quality of the models produced.

The main advantage of developing this method, which is
described in detail in (ROM, 82), lies in the fact that each
of the three stages corresponds to a type of decision that
can be taken in the light of the results obtained :

- At the end of the first stage, we are in possession of
the data believed to be necessary for the analysis, but
we know nothing about the content of the data
collected ; the decisions taken are of a subjective
nature.

After the analysis stage, the phenomenology of the
failures is percieved and understood ; the results
obtained make it possible to take objective decisions.

The third stage makes it possible to predict future
behavior and take objective decisions while
appreciating the risk involved.

It is important to emphasize the fundamental role played
by Observation in order to obtain satisfactory results at
the end of the Modelling. The two characteristics which
affect the quality of the measurements are :

the definition of the observations,

the dependability of the data collection process.

Paragraph 't describes how the second characteristic has
been satisfied. The first can only be approached in a
system situation where, starting off with correct
measurements, the method described previously is applied
in order to bring out the first interesting phenomena and
to define the measurements, before performing new
observations which allow progress to be made in the
understanding of the phenomena.

tt - OBSERVATIONS AND MEASUREMENTS

The results given in this paragraph concern the FCC
software which performs the automatic pilot functions
(cf. Figure I). This software consists of 56,000 instructions
in source language, taking up 120 Kbytes of program and
executed on four microprocessors.

The Observations and Measurements successively concern
the product, the development process and the utilization.

li.l. - PRODUCT MEASUREMENTS

The characteristics of the product have been analyzed on
two levels : tiie interconnection structure for the various
functions and the complexity of each function.

iiA.{. - Interconnection Structure

Figure IV shows the sequencing operations that are
possible in a cycle of 150 ms for the functions providing
the main cruise and landing modes of the automatic pilot :

1
2
3

k
19
5
6
7
8
9
12
13
m
15
16
17
18

Initialization on power-up
Real-time monitor
Decoding of discrete data (pilot +
environment)
Mode engagement
Mode disengagement
Go-around
Acquisition of selected heading
Yaw loop
Feedback
End
Vertical speed or altitude hold
Altitude Acquisition
Glideslope beam capture and tracking
Level capture and selected speed
VOR navigation or tracking
Localizer beam capture and tracking
Heading hold

Figure IV

8-5

The results obtained are given on the following table :

MZASL-R£MEyT ME.\.NLSC
ACCEPTABLE '

RA-NCE ;
CAta^ATED ;

VALUE ;

 :
1.14 ' Hierarchical Mean nunber o£ owdulei

:
cocpl.xity CH p<c level

Structural Deoaity ot liaka betweea]o. 0 ; complitxity CS noduLe*

Acctifibility Diveciicy of accaii to [o.oi. I] ; 0.125 ■
of aodulei A BKidulsa

Tcicabilicy or
pacha TC

Effort required to run
through a pacti on the
graph during Che test

[0.002, 0.25] !

Tascabilicy Effort required to teat ['0-'. .] ; 3.10-^
of syitH T5 the lyitea

Entropy E
Disorder in incet-nodute
rclatiooi

[0. so] ;
■

MODLLES : DC/O.S EM/ib :;E/:;t E^K P C

;
0.9S 0.37 2.3 0.1 0.39

1 0.4i 0.35 0. 0.31
O.Ji 0.51 2.2 0.42 0.1.6
i.o: 9.56 1

0.8 I 1.5 0.21 0.675
0.17 1 0.19 0.18

j u.ei 0.85 t.u 0.1b 0.673
0.GI5 O.i 2.83 0.5 o.es
0.8 0.33 0.ii7 0.185 0. 195
0.952 0.53 3.33 0.31 0.77

15 0.77 0.27 2.5 0.28 0.45
0.78 0.4 : 0.31 0.44
0.87S 0.34 2 O.Jl
0.91 0.3B 2.J3 0.378
I.01 i.a 3.92 1

Table II

Table 1

Table I gives the results of the complexity measurements
of this graph according to the measures developed by
Mohanti (MOH, 79).

By analysing this table, it is possible to distinguish

the highly satisfactory results : the levels are simple
(CH), the functions are readily accessible (A), the
paths are easy to test (TC) and the system is well
organized (E) ; these results indicate that the software
design has been well done ;

- the less favorable results concerning the difficulty in
testing the system (TS) and the appreciable coinplexity
of the relationships between functions (CS), which
indicate that the application is, by its very nature,
difficult.

tt.1.7.- Complexity of Functions

The functions involved are characterized by numerous
internal logic conditions and a high global flow of data. As
a result, the complexity of each function has been
established by taking into consideration

- the complexity of the checking structure measured by
the Entropy (EM) and the Checking Density (DC) ;

- the complexity of the data flow measured by the
number of global inputs (NE) weighted by the
percentage of instructions for accessing the global
variables (P) ;

according to the formula :

0.5 X U
EM DC

EM,. .^ DC
-) + (

NE

limite
.NE

X P)

U.2. - OBSERVING THE DEVELOPMENT PROCESS

The development has only been observed from the
Integration. In order to be effective, the collection of
data must be uniform for all items of equipment, whithout
loss of information and with no subjectivity. In order to
meet these objectives, procedures were set up during the
development of the project. Today, they are automated to
a great extent.

Data "sensors" are placed both in the Validation process
and in the Modification process (cf. Figure III). These
observations must be organized in such a way as to
respect normal working practices and to integrate
themselves into the existing structures.

Whenever a deficiency is discovered in the course of a
Validation, a sheet provided for the purpose is filled in
immediately. Initially, this sheet gives the identification
of the product and its version, together with a description
of the deficiency. This sheet is numbered and distributed
to the team in question. After investigation, the Software
Manager completes the sheet by describing :

the fault in the program,

the correction made,

the class of the anomaly.

The sheets are filed at project level for each subsystem.
The anomalies are then taken into consideration in the
Modification process, with no possibility of losing or
omitting information.

By using the "reasons for modification" directives of the
MODIFY processor, the references of the anomalies and
their encoded classes are acquired at the level of the
creation of the change items for the modules in question.
Having been filled in, the change Items are submitted to
the MODGEN production processor.

Then, a first tool is used to collect and sort all the
reasons for modification and to point out any syntax
errors that may have crept in during acquisition. After
correction, the production stages continue until the
executable code is produced.

Table III shows :

- for each software version : the number of errors
detected in the Verification / Validation process (cf.
Figure 111) together with their classification according
to the phase of origin and the type of error.

The classes or errors are defined as follows :

A : design (program architecture, breakdown into
modules) .

li : arithmetic and logic (false control law, false
logic equation, incorrect conversion, etc ...).

C : control logic (loop error, branch error, false
initialization, etc ...).

F : interface (incorrect encoding / decoding of input
/ outputs, etc ...

Z : persistent (error surviving after corrections).

to characterize the Verification / Validation process :
the number of test hours and the consequent effort
calculated on the basis of a new input applied to the
software every 150 ms.

In commercial service, the SFENA customer support
department has access to the same type of anomaly
sheets, enabling the deficiencies in the systems to be
collected together. Their origins (hardware, software,
environment) are determined in laboratory investigations.
The processing of these sheets is the same as for the
sheets obtained by the validation process.

The GENSTA processor installed recently uses the
activity reports from MODGEN. GENSTA collects the
data specific to the modification of each module. The
amount of data collected is aimed at correlating the
parameters affecting the quality of a software and at
forescasting its behavior on the basis of its past history.
This processor is activated by iV10l3GEN in an entirely
user-transparent manner. GENSTA gathers and classifies
the following data :

for each module :

. the number of modified source lines ;

. the number of tests performed over the whole
production cycle ;

. the working time of the MODIFY modification
processor.

: : :
: VERSIOB : TEST ! TEST
: NUMBER : HOURS : EFFORT
I : :

NUMBER ■ PHASE OF ORI<:iM_ : TYPE : _ -.^.^of

ESJIORS] AIIAI.YSIS ', CODINO | ^"QJ" ! * 1 ' ! "= j '
■ • „,™;„ • MODULES '

Z j OTHER 1 «Vmm iMJDiriED '

: 10 1 48 : I.ISxIo'
1 I I I I : :

II : 4 : 7 : 0 :0:4:0:0 3 : 3 i - ! - i
: II 1 96 : 2.30x10^ 31 : 3 : 27 : 1 : 0 i 7 : 4 :13 0:5: - : - :

II : 96 : 2.30xlo' 18 I 3 I 14 : 1 • 1 1 : 8 : 1 : 4 1.3: - : - :

13 1 96 : 2.30x10^ 17 : 3 : 12 : 0 : 0 :ll : 2 : 3 1:0: - : - :

: 14 : 96 1 2.30x10 23 : 10 : 13 i 0 : 3]12 : 0 : 6 1:1: - : - :

VI : 200 : 4.8x10
i t I : : ; :

30 : 20 ; 13 : 13 t 9 : 6 i 4 : 9 16 i 6 ! 13 i 36 i

: V2 : 320 i 7.68x10 73 : 46 1 7 : 20 i 3 Il9 : 4 : 8 21 : 16 : 13 : 47 :

: V3 : 190 : 4.56xIo' 37 : 7 : 23 I 7 11:3:9:9 2 : 13 : 12 : 24 :

: V4 : ISO 1 3.6x10* 30 1 12 1 18 : 0 : t :I1 : 3 : 4 5:6: 16 : 46 :

: VS : 220 : 3.28x10 47 : 20 : 9 : * 18 i 3 : 3 :12 : 7 7 : 13 : 19 : 72 :

: V6 : 80 : 1.92x10*' 13 : 8 : 3 : 2 : 0 : 3 : 3 : 1 0:4: 9 : 30 :

: TOIAUX : 1592 : 38,2x10*
: : :

: : : ; : : :
330 : 138 i 148 : 64 :19 :49 :35 :3a

: : ; : : ; ;
31 i 38 i 82 i 233 i

: : :

Table III

The software for an item of equipment generally uses
several softwares which are produced separately and
executed on different processors. From the files produced
in the course of MODGEN, the tool "ATTAC8" collects
and classifies all the modifications made on the various
softwares related to one item of equipment, giving for
each reason for modification the list of the elements
affected in each software. This list is a component of the
documentation associated with the equipment. It also
makes it possible to give a complete breakdown of all the
changes undergone by the softwares during their life
cycle.

for each equipment processor :

. the total duration of MODIFY ;

. the total worl<ing time on the development
system ;

. the ainount of work submitted ;

. the number of modules modified ;

. the total number of new source lines ;

. the average modification rate ;

. the average size of a modification.

As an example, Table IV gives a synthesis of these data
for the last four versions.

5 - EVALUATIONS

OBJECTIVE 1 - Impact of Development Constraints

The data given in tables III and IV make it possible to
perform the following analyses :

5.1. DESCRIPTIVE ANALYSIS

With reference to table III, this paragraph presents the
characteristics and performances of the Verification
/Validation and Integration / Modification processes.

VtKSION
MOUULKS NtU

MOUULKS
DlKKCTIVtS

uai
LINtS

AVKKACE
DIKECTIVt

LtHCTti

HOUIKY
USE
TIME

JO US
i'KHFOKMliU

SYSTtM

TlMt

LiNtS
HOUlKltU

NUMBKK

TtSTS

NllHBt:K Of :
IMl'KllVt- :
MKfflS :

Vo3

: VoA

: Vo6

:

74

102

103

70

10

16

1

i

1195

1363

1365

1156

3119

AA46

4386

3168

3

3

3

3

14^1

10''59

19''20

6N7

795

1091

404

48''56

3l''36

5l''07

24''05

27441

32177

294 58

23261

412

358

570

174

:
a :

:

Table IV

k3. OBSERVING THE UTILISATION

The FCC software has accumulated more than 6000 flight
hours. Of the observed anomalies that have given rise to
report sheets, none could be ascribed to the software.

Recent studies have shown the impact of the software
utilization range on operational reliability (lEY, 82),
(ROM, 82), (BUT, 80), (ROS, 82). Account with this result
the frequency with which each of the FCC functions is
activated has been measured on different routes. Table V
shows these frequencies for two routes : TOULOUSE -
LONDON and LONDON - AMSTERDAM.

L0ND0.1 - :
LONDON A.^STERDA.M : .

1 - 2 , 1 :
2 - 3 (D-O/n (n-l)/n ;

2-9. 1/n I/n !
3-4 1 1 :
4-19 1 1 :

19 - 16 0.8 0 :
19 - 17 O.li 0.25 :
19 - 6 O.OI 0.69 :
19 - la 0.04 0.04 :
16 - 18 0.05 0 :
15-6 0.C3 0 :

. 16-12 0.51 0
I 16-13 0.36 0 :
: 16-17 0 0
: 17-6 0.16 0.45
: 17 - IB 0 0
: 17-13 0.83 0.54
! 17-12 0 0

6-12 O.K 0.53

TRA.VSITI0.1
TOULOUSE -

LavDON
LONDOS - i
A.XSTERDAM :

6-13 0.B5 0.46 :
: 18-12 0.5 0.66 1

18-13 0.5 0.33 :
! 12-14 0 0 :
: 12-13 1 1 :
: 12-8 0 0
: 13 - li 0.14 0.13 !
: 13-13 0.27 0.3: :
: 13-5 0.15 0.04 :

: 13 - a 0.43 0.48
: 14 - S 0.16 1 1
: 14-8 0.83 0 :

15-14 0 0.26 :
15-5 0 0 :

: 15-8 1 0.73
: 5-7) 1

5-8 0 0
7-8 1 1

; 8-2 ' 1

5.1.1.- Verification / Validation

Characteristics

300

200

100 -

VERSIONS

[> INTEGRATION

[> VALIDATION

Figure V

Table V

The following features may be noted

the start of the closed-loop validation tooks place as
from 13 ;

the integration of a new landing function after V2 ;

the increase in the number of validation hours as soon
as the airframe manufacturer enters into the
validation process.

Performances

Distribution of detected error rates according to their
phase of origin.

Distribution of detected error rates accroding to their
type

ENCODING

MODIFICATION

^ INTEGflATKDN

[> VALIDATION

Figure VI

This serie ol curves demonstrates

- the predominant detection of errors committed during
coding, in the integration test ;

the efficiency of the closed-loop validation process for
finding the errors resulting from the analysis phase ;

the non-negligible extent of the errors committed in
the course of modifications.

The observations confirm the known results (ALB, 82),
(LIP, 79), (MOT, 77), particularly concerning :

- the errors resulting from the design, which are
revealed more effectively by a functional test than by
a structural test ;

- the errors resulting from the coding, which are the
most frequent and the easiest to detect.

3*C : compucing
and logic

Interface
j; Design

PersisCenc
VERSION
NUMBER

[> INTcGSATICN

D 0 VALICA7I0N

Figure VII

These curves show some significant phenomena which
confirm and complete the previous observations

the interface errors (F) are revealed during the
integration tests, which is normal because it is during
these tests that the computer interface is considered
for the first time ;

the computing and logic errors (B and C) are the most
frequent and are best detected during the verification
tests ;

the design errors (A) are best detected by the closed-
loop tests.

The "persistent" feature (Z) seems to be strongly affected
by the nature of the test : it appears in fact that the
closed-loop test detects errors which are more difficult to
isolate (linked to the design).

These analyses make it possible to draw the following
initial conclusions

the integration phase has achieved its objectives : the
interface errors and design errors have been revealed
to a high degree ;

the closed-loop test is effective : the analysis and
design errors are preponderant here, which was not the
case with the integration.

8-9

5.1.2.- Integration / Modification

Characteristics

The workload to be taken into consideration for each
change, represented by the number of errors and the
number of OCR's (development change requests), is
distributed as follows :

NUMBER Or
ERRORS

70 - A
60 - /\
SO ■ / \ A
to • / \ /V auDbtr of tcrors co b«

30 ■ A /
\
^ \

corrtcc«d

20- / ^ ̂ y
s^- nuabtr of DCR to b* taken

inco account 10 -
f /

f
11 12 13 v. VI V2 V3 Vi V5 V6

0 INTEGRATION : 1

—
1

C l[> VALIDATION

In order to limit the effects of the OCR's, which are
usually modifications of the gains in the servo-systems,
i.e. constants, the design of the programs has been carried
out by separating the data from the executable code. It
seems that this principle is insufficient, as it can clearly
be seen that the majority of OCR's affect 3 to 10
modules.

Figure X shows the number of modules modified at each
change of version.

NUMBER OF MODULES
MOD IF1 ED

~l I I 'I i 1 i I I V
10 II 12 13 U VI V2 V3 V4 V5 V6

Figure VIII

Performances
Figure X

The measurements performed by ATTAC8 make it
possible, in particular, to establish the following
histogram which provide information on the flexibility of
the software.

% DCR

5.2. EXPLORATORY ANALYSIS

50

to

30

20

10

0
I 2

%DCR

3_^
15 20
NUMBER OF EXECUTABLE
MODULES MODIFIED

NUMBER OF MODULES
(EXECUTABLE + DATA SEGMENTS)
MODIFIED

Figure IX

Specification changes (OCR's) represent an important
control production constraint, and it is advisable to
control their effects. As an illustration, a parallel has
been made between the observed error rates, the number
of OCR's and the number of modules modified.

A first examination (cf. Figure XI) shows an inverse trend
between :

- the number of OCR's and the number of modified
modules, which increase ;

- the rate of observed errors, which decreases.

Figure XI

8-10

'' DCR SOD. DC}1. ' ^"i-1 >nD. - WlD.j h'h; l.c>

1. 1.00

OCR o.n I.OO

-03 0.30 o.s; 1.00 -. 0,30 O.s; 1.00

SCR, - ^^i-l 0,!S C.JO o.:i 1.00

SCO. - ^'i-. S.aJ O.Ii o.b: o.?o 1.00

1 1 \ _, 0.7ft O.Si O.ft] 0.90 0.97 1.00

! Den
1

-C.SO O.C) o.:i -0.61 -O.W -0.11 1.00

Xj represents the detected error rate during the
validation of version i.

DCRj represents the number of OCR's applied to version

MODj represents the number of module in version i that
have been modified.

It can be seen in particular that :

there is a highly negative correlation between Xj
and ? DCR, which expresses the trend inversion
observed ;

there are strong correlations between Xj /x i-1 and
DCRj - DCRi.i or MODi - MODj.!.

5.3. MODELLING

A multilinear regression makes it possible to express the
cause-effect relationship between the numbers of OCR's
and modified modules for two successive versions and the
increase in the error rate.

The model obtained is as follows :

- 0.5508 X lo" X (HOD. - MOD._|) . lo"' x (DCR. - DCR._,) » 0.9289

It is interesting to exploit this model in order to study the
conditions in which OCR's have a negative impact on the
state of the version produced, i.e. in what conditions the
software regresses. This is achieved by performing the
equation :

MODj - MODi.i = a (DCRj - OCRi.i)

and studying the change in x i / A i-1 foi" various
assumptions for a .

■i ' V,

^

^ ̂

^
-::^

f.00, - MOO ^

' ' ' ' 1 ■ I 1 1 . 1 i . 1

Figure XII

It can be seen that

the state of the new version is not as good as the state
of the previous version :

for two modifications if they each affect ten or
so modules,

for twelve or so OCR's if only one module on
average is modified per DCR.

This illustration demonstrates that the future state of the
software depends to a great extent on concerted action :
the intensity of the modifications and the flexibility of
the software.

As the average number of OCR's is 13.6 per version, and
the average number of modified modules is 3, it can be
deduced from this that flexibility is a basic quality
criterion for this type of software. In order to improve it,
it appears necessary to anticipate the type of
specification changes as early as the design stage.

OBJECTIVE 2 - Operational Reliability Forecast

This analysis is based on ^,

the data provided in paragraphs 't.2 and ^(.3 concerning
the software characteristics and the utilization ;

- the results published in the literature on the
relationship between the operational reliability of a
program and the following characteristics :

. code complexity (CHE, 80), (ALB, 82) ;

. utilization (CHE, 80), (lYE, 82), (ROM, 82),
(NOU, 82), (R05, 82).

The presentation is limited to the resulting model.

8-11

In accordance with the schematic representation given on
Figure IV, the software under study is seen as a network
of independent functions that are created and tested
separately.

The presentation is limited to the resulting model.

In accordance with the schematic representation given on
Figure IV, the software under study is seen as a network
of independent functions that are created and tested
separately.

The reliability of a function is defined as the probability
that it will correctly perform the service expected of it,
i.e. producing the correct outputs and correctly
transferring the control to the next function.

When the software is activated, a sequence of functions is
executed. The result depends on this sequence and on the
reliability of each function.

Assumption 1
independent.

the reliabilities of the functions are

The reliability of a function is modelled by a law which
takes into account its complexity Cj, in accordance with
the definition given in paragraphs 't.1.2. and the debugging
word npi that has been applied to it according to the
formula

R.
(1-C.) (N . + 1)

1 _£1

A transition to C has been added at the terminal function
n with the probability R,-, to represent the correct
execution fo the output function.

The probability of transition PJ; between two functions i
and j is weighted by R; to represent the faultless
execution of function i.

In consequence, the reliability of the software is the
probability of reaching state C from the initial state.

Figure XIII represents the Markov chain modelling the
FCC software under study.

1 (1-C.) N . + 1
1 pi

Assumption 2 : the transfer of control between functions
takes place according to a Markovian process.

The transition to a state on the graph is a probability
which depends only on the present state. It is considered
that the probabilities of transition are constants which
entirely characterize a given utilization profile. As an
example, the transition frequencies given in table V
characterize two distinct utilizations of the same
software.

Reliability Model

The network of functions is represented by an oriented
graph, each node of which is a function and each arc a
possible transition. Each node is associated with a
reliability Rj, and each arc with a probability PM which
expresses the probability of a transfer of control between
i and j.

Two absorbent states C and F have been added to
represent the correct termination and the failure
respectively.

A transition to F has been added to each node i with the
probability 1 - R, to represent the occurrence of a fault
during the execution of i.

Figure XIII

The expression of the reliability is obtained from the
transition matrix P according to a derivation documented
in (CHE, 80).

R = P" (Ni, C) expresses the reliability of the software
studied as a function of Rj and P;;.

Application to the FCC, using a formal processing system
(MAC, 77) makes it possible

to determine which functions have the most adverse
effect on the reliability of the whole by means of a
sensitivity analysis ;

- to allocate the test effort according to the criticality
of the functions ;

to estimate the operational reliability.

An illustration for the LONDON - AMSTERDAM route is
given in table VI which shows the sensitivity coefficients
of the various functions together with their resulting
order of importance and the distribution of three test
efforts.

8-12

SENSIBILITY
DISTRIBCTION OF.TEST EFFORT

K. .0' N - 10^ N. .0-

23^1 :2;33 75509
1320 23011 115167
1710 266 SO 13^366
2J10 2bBiO 13^364

(tt. fi39BO
S 465

7

1

U8680
7267

16313
7230

27 55833
9
1

2'.667
7337

b 18697

8 I579I
3616

8 A65 148660

Table .VI

An increase in reliability results from each test phase
(and the associated debugging).

After [0^ tests, the reliability expression is :

R do'*, n) = 0.9992365 / (1 - 5.'H2962H.[0-'* . "- t) n
n

The expressions after 10^ and 10^ tests are respectively :

R (105, n) = 0.9999229 / (1 - 0.0'f0195288 . n - 1) n
n

R (10^, n) = 0.9999S2S6 / (1 - 0.9982'*912 . n - I) n
n

Where n represents the number of new tests.

The family of curves presented on Figure XIV represent
the phenomenon of increasing reliability for five validation
stages, making a total of 'fO x 10^ tests (close to the
quantity applied to the FCC in conformance with Table
III). We can notice a phenomenon of Software "hardening"
in proportion to the debugging effort, up to a level which
gives it satisfactory reliability.

CONCLUSION 1.

This analysis clearly demonstrates the interest
software quality measurement.

of

Although limited to certain basic phenomena, the
evaluations presented make it possible to achieve the two
objectives set out in paragraph 2

the conditions of software regression as a function of
the change requests can be measured and anticipated ;
in particular, this makes it possible to adapt the
validation effort :

the adequation of production techniques
constraints has been assessed :

to the

the modification process is the critical point in
the development cycle. For this type of
application with a high modification intensity,
flexibility must be one of the highest-priority
criteria for software design ;

the test strategy (individual tests, open - or
closed - loop tests) defined by the project make
it possible to achieve the objective at each
stage, and has proved to be effective for
eliminating the various errors ;

the advantage of a reliability model in evaluating the
design and distributing the test effort has been
confirmed.

Moreover, this analysis has demonstrated the interest of
data collection in an industrial environment where
production and quality requirements are extremely
stringent. The most positive points that have been
revealed are the efficiency of automated data collection
in the modification phase and the sensitization of the
development teams to the factors of quality.

The benefits of such an analysis are a more objective
awareness of performances, a development in methods
and tools, and the desire to persevere with observation
and measurement.

1 I Ml. :| lascs

Figure XIV

8-13

BIBLIOGRAPHY

(ALB, 82) 3.L. ALBIN, R. FERREOL
"CoUecte et Analyse de Mesures de
Logiciel"
TSl, Vol. I n° >t - 1982 juillet-aoQt -
pp 297-313.

(BAS, 81) V.R. BASILI, D.M. WEISS
"Evaluation of a Software Requirements
Document by Analysis of Change Data"
I'roceeding IEEE CH 1627-9 - 1981.

(BUT, 80) S.T. BUTNER, R.K. IYER
"A Statistical Study of Reliability and
System Load at SLAC"
10 th FTCS - Kyoto, Japan - September
1980.

(CHE, 80) R.C. CHEUNG
"A User Oriented Software Reliability
Model"
IEEE TSE Vol. SE-6 n''2 - Mars 1980

(FEU, 79) A.R. FEUER, E.B. FOWLKESS
Relating Computer Program
Maintenability to Software Measures"
National Computer Conference AFIPS
1979 pp 1003-1012.

(lYE, 82) R. IYER, S. BUTNER, E. Mc CLUSKEY
"A Statistical Failure / Load
Relationship : Result of a Multicomputer
Study".
lEEE-TC Vol. C31 n°7 juillet 1982.

(LIP, 79) M. LIPOW
"Prediction of Software Failures"
The Journal of Systems and Software n°l
- 1979 - pp 71-75.

(LIT, 81) B. LITTLEWOOD
"Stochastic Reliability Growth : a Model
of Fault Removal in Computer Programs
and Hardware designs"
IEEE - TR Vol. R-30 n"** Octobre 1981 -
pp 313-320

(MUS, 80) :. MUSA
"The Measurement and Management of
Software Reliability"
Proceeding IEEE, September 1980

(NOU, 82) 3. NOUBEL, R. TROY
"Evaluation de la Fiabilite du Logiciel
lors du Test de Recette : Methode et
Application"
Rapport ADI-OGL - Juillet 1982

(ROM, 82) Y. ROMAIN, P. COUSTAUX
"Fiabilite des Logiciels du Centre
ARGOS"
Rapport ADI-OGL - Janvier 1983

(ROS, 82) D.J. ROSSETI, R. K. IYER
"Software Related Failures on the IBM
3081 : A Relationship with System
Utilization"
Compsac 82, Chicago, 8-12 november
1982, pp 1*5-51*.

(SCH, 79) N.F. SCHNEIDEWIND
"Application of Program Graphs and
Complexity Analysis to Software
Development and Testing"
IEEE - T.R. vol. R-28 n°3 Aout 1979

(MAC, 77) MACSYMA Reference Manual
The Mathlab Group - Laboratory for
Computer Science MIT -version nine-
December 1977 - 308 pages

(MOH, 79) S.N. MOHANTY
"Models and measurements for quality
assessment of Software"
Computing Surveys, Vol. 11 n°3,
September 1979, pp 251-275.

(MOT, 77) R.W. MOTLEY, W.D. BROOKS
"Statistical Prediction of Programming
Errors"
RAnC-TR-77-175

9-1

FLIGHT TEST OF A RESIDENT BACKUP SOFTWARE SYSTEM

Dwain A. Deets and Wilton P. Lock
NASA Ames Research Center

Dryden Flight Research Facility
P.O. Box 273

Edwards, California 93523-5000
U.S.A.

and

Vincent A. Megna
Charles Stark Draper Laboratory
Cambridge, Massachusets 02139

U.S.A.

SUMMARY

A new fault-tolerant system software concept employing the primary digital computers as host for the
backup software portion has been implemented and flight tested in the F-8 digital fly-by-wire airplane.
The system was implemented in such a way that essentially no transients occurred in transferring from
primary to backup software. This was accomplished without a significant increase in the complexity of
the backup software. The primary digital system was frame synchronized, which provided several advan-
tages in implementing the resident backup software system. Since the time of the flight tests, two other
flight vehicle programs have made a commitment to incorporate resident backup software similar in nature
to the system described in this paper.

NOMENCLATURE

ADFRF

CIP

CLl

CSDL

DFBW

DOWNLINK

FAILl

FAIL2

FRR

Ames-Dryden Flight Research Facility

computer input panel software

control law software (includes out-
put commands)

Charles Stark Draper Laboratory

digital fly-by-wire

data recording software

location of first failure insertion
point

location of second failure insertion
point

flight readiness review

IFU interface unit

I/O input/output

LED leading edge down

LEU leading edge up

Nz normal acceleration, g

REBUS resident backup software

RMl redundancy management software
(part 1)

RM2 redundancy management software
(part 2)

SYNCH XLINK synchronization and cross-link
software

INTRODUCTION

Digital flight control system des
ware errors for as long as digital fl
to provide a dissimilar hardware back
dissimilar hardware backup provides a
software errors, it is a costly solut
hardware assets. It also requires a
active system and pass these commands
disadvantages can be even greater bee
digital and analog systems. This usu

igners have been concerned
ight control has been in e
up control system, usually
way of maintaining contro
ion that fails to take adv
redundant switching mechan
to the redundant actuator

ause of the need for senso
ally means a separate set

with protecting against "generic" soft-
xistence. The standard approach has been
analog in implementation. Although a

1 of the aircraft in the event of generic
antage of the unfailed primary system
ism to accept system commands from the
s. In the case of analog backups, the
r inputs that are compatible with both
of sensors are needed for each system.

Several approaches have been advocated for handling software errors without requiring independent
backup hardware. One approach is to utilize dissimilar software in each of the redundant hardware chan-
nels. This approach has been used with success on the A310 airbus (Ref. 1). Although successful for
that application, this approach results in a system with wider tolerances on the tracking between chan-
nels that may have disadvantages in other applications. A second approach is to implement identical
dissimilar software sets within each of the redundant hardware channels. This has been referred to by
various names, the most common being "recovery blocks." The resident backup software (REBUS) described

This paper is declared a work of the U.S.
Government and therefore is in the public domain.

9-2

in this paper is of this second type. It has the advantage of minimizing hardware and retains the advan-
tages of relatively tight tracking between the unfailed hardware channels. I

Considerable debate has gone on concerning the amount of dissimilarity necessary to assure coverage
for the generic software error. In this debate, a distinction is made between several classes of soft-
ware errors and the amount of dissimilarity necessary for protection for each of these error classes.

One class of generic error is the design error, in which the specified design is not adequate to
handle the environment encountered in the actual application. As an example, the coupling between a
structural mode and the aerodynamics is sufficiently different from that simulated in ground tests that
the resulting closed loop through the control system becomes unstable.

The second class of generic software error is the implementation error, which results in a system
that does not meet the specified design. A particular difficulty concerns the latent system or software
defect that goes undetected in testing but is exposed under certain environmental conditions experienced
in flight. These implementation errors can occur at a number of different levels: in the algorithm
chosen by the designer; in the way the software coder writes the source code; or in the compiler, which
converts the source code to machine language. In every case, these errors would go undetected through-
out ground testing and manifest themselves in an unsafe manner in actual flight. Implementation errors
in the compiler are usually considered to be least likely; a compiler receives a considerable amount of
implicit testing as a result of all the code that is generated and exposed to a wide range of conditions
during the extensive verification and validation that are characteristic of man-rated digital fly-by-
wire systems.

Even when care is taken to assure dissimilarity for each level of implementation error, precautions
must be taken to assure a successful transfer to the dissimilar software because of ttie nature of the
digital computer and the unforeseeable consequences of a software error. This is most important during
initialization of the dissimilar software because vehicle state data are needed to establish proper
startup conditions. The danger exists that the software error in the primary system has caused con-
tamination of the vehicle state data, thereby raising the possibility of initializing the backup software
at an unsafe condition.

Potential problems of this type have been of concern and have been some of the principal reasons
that designers have chosen to use the better understood, albeit more expensive, analog backup. The
flight experiment described in this paper was done to reduce the risk associated with backup software,
with the hope that this more cost-effective method will be suitable for use in future flight control
system designs. The experiment utilized the F-8 digital fly-by-wire (DFBW) airplane operated by the NASA
Ames Research Center's Dryden Flight Research Facility (ADFRF) at Edwards, California. The system imple-
mentation was accomplished by the Charles Stark Draper Laboratory (CSDL).

FLIGHT EXPERIMENT OBJECTIVES

The F-8 DFBW airplane is operated as a flight facility for evaluating new concepts, such as REBUS, in
the real flight environment. One key step in preparing for a flight test is the independent review by
people with broad operational experience in flight test. At ADFRF, this review process is called the
flight readiness review (FRR). The value of evaluating a system or concept in flight is that the system
will, by necessity, be subjected to close scrutiny and thorough testing to receive a favorable response
from the FRR committee. It will also be subjected to the actual flight environment, which will be dif-
ferent to some degree from that experienced in ground test. Those differences, and their effect on the
system behavior, are important in understanding the concept under evaluation.

These considerations contributed to the establishment of the experiment objective: to thoroughly
evaluate a high-potential approach to fault-tolerant software utilizing a dissimilar software flight
control system concept, subjecting it to all the processes necessary to qualify it for flight and vali-
dating those processes through subsequent flight test.

The REBUS concept was selected for evaluation because of its system-wide efficiency gained by
utilizing the same computing hardware used by the primary system.

F-8 DIGITAL FLY-BY-WIRE SYSTEM .;

The F-8 DFBW airplane (Fig. 1) was modified by installing a fail-operate, fail-safe digital fly-by-
wire system. (A detailed description of the system is presented in Ref. 2.) It is useful to provide
some details in a simplified form to make explanations of the REBUS modifications easier. The DFBW
system contains a triplex digital primary system with a triplex analog computer bypass system serving as
its backup. Figure 2 illustrates the interface between the two systems. The triplex primary system uti-
lizes redundant digital computers, and CSDL provided interface units (IFUs). Redundant aircraft motion
sensors and pilot stick transducers are conneced to the IFUs. Surface commands are passed through an
analog midvalue voter, with the midvalue of the three channels passed on to the servo drive electronics.
This midvalue voter, being external to the digital computer, has additional analog circuitry that can
declare any one of the digital output commands as failed and disable the particular channel output at the
midvalue input plane. - ■

9-3

Analog Backup System

The analog backup is a direct electrical link between the pilot's stick and the servo drive elec-
tronics. The redundant commands are passed through the same midvalue select devices utilized by the
primary system. This system, forward of the midvalue voter, is called the computer bypass system.

Primary System

The primary system is frame synchronized. This synchronism facilitates the exchange of data between
computers and the input/output (I/O) function that distributes sensor information between computers, such
that each receives a copy of all available sensor inputs.

The primary software mechanizes a number of different control laws for the aircraft. They are the
direct mode (control stick to surface actuator without any feedback) and stability augmentation system
mode for the pitch, roll, and yaw axes. The pitch axis also contains the command augmentation system
for further improvement in handling qualities. Finally, there are the standard autopilot modes of
ai rcraft control.

The input sensor set includes not only pilot stick and pedal sensors and vehicle motion sensors, but
also information on surface commands and positions. In particular, the left and right elevator positions
and the.last surface command to all five control surfaces are available in the input sensor buffer
located external to the digital computers in the IFU. This control surface information is useful in the
initialization of the REBUS software.

The primary software contains a capability of recovering from transient errors. This capability
(known as "restart") initializes the control laws after a potentially resettable failure has been indi-
cated, and it attempts to recompute, anticipating that the failure will not reoccur. The software has
been set up to recycle through the restart 10 times. If the failure still persists after 10 cycles, the
channel declares a channel failure and is voted out by the remaining good channels. If one channel has
already failed, the flight control system would be forced into the computer bypass system.

Of the various conditions that can create a failure condition, two cause immediate failure declara-
tions, and one (designated "execution error") is potentially resettable. These conditions are the
following:

1. Failure to perform an I/O function within 53 msec of the last I/O (the control law frame time is
20 msec)

2. Failure to update the watchdog timer

3. Execution error for 10 consecutive program iterations or once every 6 iterations for 306
iterations

The reason for attempting 10 restarts before declaring a channel failure is the time duration that
can be tolerated without a surface command update: For the F-8 aircraft with stable bare airframe, a
300-msec time period can be tolerated; 10 restarts require between 100 and 300 msec, depending on
where the failure indication occurs within the compute cycle.

REBUS SYSTEM DESIGN

Several tradeoffs must be made before specifying a system design. Many are similar to those made
traditionally for an independent hardware backup. Issues such as complexity of the backup, criteria for
automatic transfer, and interchannel synchronization must be addressed. Other issues that are specific
to this experiment, in that an existing system was modified, will not be discussed.

Complexity

Selection of control laws is usually based on the minimum necessary to provide return to the base and
safe landing capability. In the case of the F-8 DFBW aircraft, an unaugmented backup would be adequate
to provide the necessary functionality. For this experiment, the decision was made to include slightly
more capability than the bare minimum to better represent modern airplanes, which generally require
augmentation to some degree. Three-axis fixed-gain rate damping was selected. Figure 3 illustrates, in
the form of a block diagram, the pitch-axis stability augmentation system. As can be seen, there are
several nonlinear functions, such as stick shaping and dead band. The only deviation from fixed gain is
the selection of a landing approach gain set when the wing is put in the up position and the control sur-
face authorities are modified. (The standard F-8 aircraft provides for two wing-incidence positions, the
wing-up position providing improved pilot visability during the landing approach.) The other axes are
similar in complexity.

The control law computation cycle could be mechanized quite simply by using a straight in-line code
and very few branches. Many of the self-check functions, such as sensor redundancy management, could
also be eliminated to reduce complexity. The overall complexity was reduced considerably relative to the
primary system. For example, the REBUS software required less than one-tenth the memory that the primary
software required. The compute cycle was selected to be 50 samples per second, the same as that of the

9-4

primary system (for convenience, in that it reduced the amount of separate stability analysis and valida-
tion necessary).

Transfer Criterion

A criterion was needed for automatic transfer to backup, assuming that a generic software error could
cause a situation requiring action sooner than the pilot can react. The appropriate solution was to use
the channel failure declaration, which is based on repeated self-execution error indication. Failures to
execute while in the control law code are representative of the failure mode for which the backup soft-
ware was intended, in that the system behaves in the way that a generic software failure would be
expected to manifest itself.

It is desirable to minimize transients that occur upon transfer to backup if this does not contribute
to increased complexity or other undesirable effects. Given that the system failure has occurred because
of a generic software error, one must also assume that there is a finite probability that the record of
the aircraft state as maintained in the memory of the system computers has been degraded by the failure.
Therefore, one must look elsewhere for the information required to initialize the backup software.

The only information that the backup software needs to take control of the aircraft without intro-
ducing an objectionable transient in aircraft state is the current position of the aircraft control sur-
faces. This allows for some small transients that result from reinitialization of any active filters and
changes in loop gains from state-dependent to fixed values.

Three assumptions were made relative to initialization of the REBUS software:

1. Primary software failure occurs simultaneously in at least two channels of the system.

2. The trigger mechanism generates simultaneous pulses for at least two channels of the system.

3. At least two channels simultaneously execute the input sensor I/O function.

Given these assumptions, the backup software can be initialized to the aircraft's existing control
surface commands, and thus it generates no transient other than that due to gain changes. This is
possible because the simultaneous performance of the initial input sensor I/O function by the computers
enables them to receive a full complement of sensor signals, that is, not only their own dedicated set
but those dedicated to other computers.

Return to Primary

A major issue for any backup system designer is whether return to primary should be allowed. If the
primary system has suffered a major fault, then it must be assumed that transferring back to that defec-
tive system is unsafe. On the other hand, if the backup software is not providing a controllable
airplane, the pilot may want to try the primary software in a last-ditch effort. Thus, both sides of the
issue could be argued without reaching a clear resolution. For an experimental system such as the F-8
REBUS, it is desirable to transfer into backup even though no serious problem exists with the primary.
For test purposes, it is highly desirable to be able to transfer back and forth at will during a given
flight. For these reasons, provisions were included in REBUS and the F-8 DFBW primary system for
transfer back to primary from REBUS.

Interchannel Synchronization

Since the primary synchronization algorithm is a software function, the REBUS must provide a dissimi-
lar synchronization algorithm if a synchronized backup system is to be established. The dangers asso-
ciated withnot being able to synchronize upon transfer to REBUS must be considered. Also, the additional
complexity associated with synchronization makes it less desirable from a system complexity standpoint.
For these reasons, it was decided to establish REBUS as an asynchronous system. This decision has
several ramifications (such as, no exchange of data between computers can be performed because of the
complexity of adding an asynchronous data transfer capability).

Sensor cross-trapping is used in the primary system to ensure that each channel operates on identical
data. With the asynchronous approach in the REBUS, each computer must operate on dedicated sensors that
are independent of the operation of the other computers. Because of this interchannel independence, it
is of interest in both ground and flight tests to see how much variation develops between each channel.

IMPLEMENTATION

The specific details of the REBUS implementation were strongly dependent on the peculiarities of the
F-8 DFBW system. Some functions were included in the total modified DFBW system because it was a flight
experiment and it was required that tests be performed easily. These details include the triggering
mechanism, the approach to simulating software errors, and the status of the computer bypass system.

9-5

REBUS Triggering

The failure detection logic in the primary system causes the generation of a discrete output from
the computer channel that is indicating a failure. This discrete output is processed by external cir-
cuitry unique to each channel computer. This circuitry sets a channel failure indicator, which is
then passed to the other channels. This discrete was convenient for use as the trigger generator;
therefore, a circuit that voted the discrete output from each computer was constructed for each chan-
nel. If two of three computers would generate a discrete, the trigger pulse would be produced for that
channel. Figure 4 illustrates the relative location of the added hardware including a switching card
in the IFU and a transfer circuit external to the computer. Also shown is the REBUS memory in the pri-
mary digital computer.

This trigger pulse must be introduced into the computer to initiate the execution of the backup soft-
ware. The pulse could not enter as some external interrupt, for the computer could fail in such a way
that all interrupts would be masked. The only "interrupt" that would be recognized by the computer at
any time and under any conditions was the system reset.

Each channel has its own trigger circuit. This mechanization provides protection against inadvertent
switching of the system from primary software to backup software. Two of three computers must be
generating a channel fail to produce the trigger pulse. If a particular trigger circuit fails and
generates a pulse when none is commanded, only that channel's computer switches to backup, and any
discrepancy between its outputs and the other computers' outputs will be voted out by the external mid-
value voters. Failure to generate a pulse when one is commanded will not prevent the other two computers
from switching to backup software.

Software Programming

Ideally, it would have been desirable to have people other than those involved in primary software
development mechanize the backup software. Also, it would have been advisable to use software develop-
ment tools different than those used for the primary software. Neither one of these steps for enhanced
dissimilarity were used for this experiment because of the added time and cost associated with them.
There would have been no way to evaluate the effects of these additional steps within the limited scope
of this experiment, so it was not deemed necessary to include this additional expense.

Simulation of Errors

For the purposes of this experiment, a simulated generic software error was needed. Several types of
generic software failures were studied as to how they would manifest themselves as apparent hardware
failures. It was apparent that a generic software failure that would be of sufficient severity to bring
the primary system down would be such that a restart would result. This can be simulated by adding an
instruction to write to a protected portion of memory. Segments of memory can be protected from being
written to. Thus, the simulation of a generic software error was implemented by including a pilot-
selectable branch in software that included a write instruction into a protected portion of memory.
Several different points within the control law code were selected for error insertion. The error
insertion function was subject to an arming device, also pilot selectable.

Computer Bypass

Since the unmodified F-8 DFBW already had a backup provided by the computer bypass system, the
question arose as to whether the computer bypass function should be removed when the REBUS was added.
Retaining the computer bypass would be in effect a backup on a backup. However, a strong argument
existed for not removing it because of the reliability record of the specific prototype primary computers
available to the F-8 program. With the computer bypass system, the total system hardware reliability is
adequate for safe operation. Thus, the computer bypass system was retained for its contribution to hard-
ware reliability.

GROUND TESTS

An important step in evaluating the REBUS system was the F-8 Ironbird simulator, which utilizes a
decommissioned F-8 aircraft with a complete DFBW system installed. The aerodynamics are simulated in a
general-purpose simulation computer. The specialized hardware necessary for the REBUS was implemented in
brassboard versions of the interface units.

Part of the ground tests was the determination of transfer transients for a number of failure inser-
tion points within the control law code. The only significant difference was whether the failure was
inserted before or after the actuator command output. Figure 5 illustrates the situation for a typical
20-msec control compute cycle. The end of CLl (control law software module) represents the point at
which the actuator output command occurs. The first failure insertion point is represented by FAILl (at
the end of RMl, the first part of the sensor redundancy management software module). Other software
modules include SYNCH XLINK, which performs the synchronization cross-link, RM2, which is the second part
of redundancy management, and DOWNLINK and CIP, which process the data recording and the pilot's computer
input panel, respectively. Another failure insertion point was FAIL2, representative of a failure
occurring after the surface output commands. As in the ground tests, if the failure occurred prior to
the surface command update, such as at FAILl, the aircraft sustained a longer period of time without

9-6

surface commands, and the backup software was initialized with relatively old aircraft state information.
Depending on the aircraft motion at the time of the failure, the transient on transfer varied. In no
case was the transient considered severe.

The time period with no control, between 240 and 300 msec, is a function of the amount of time the
primary system is allowed to attempt to correct itself. Figure 6 shows (in a simplified form) how a
fault occurring at the end of DOWNLINK and CIP would be repeated through 10 attempts to restart while
still in the primary system. For this case, the transfer time was 294 msec. For the F-8 aircraft, this
time period is short enough that it does not cause any control problem. For other airplanes, the
allowable time period may be much shorter, in which case a smaller value for the failure counter should
be selected, assuring controllability; however, this will diminish the system's tolerance of transient
failures that can be withstood without transfer to the backup.

FLIGHT TESTS

At the ADFRF flight readiness review (FRR), most of the details of the design and the results from
the ground tests were reviewed without significant comment. There was one major concern raised that may
have implications for others. This concerned the plans for enabling the REBUS after safely at altitude.
The FRR committee questioned the advisability of taking off the first time with the REBUS enabled. The
committee felt that the system should not be enabled until a safe altitude was achieved. The committee
also raised a question as to the expected transient if the system was forced to REBUS at liftoff, given
that the REBUS was enabled. It was finally determined that the more conservative approach was to wait
until a safe altitude was achieved before enabling the system.

Once the FRR committee approved the plans, the flight experiment began. The first flight was on
23 July 1984. A summary of the flights is presented in Table 1. The emphasis of the experiment was on
comparing flight with simulation. This included the tracking between channels, transfer transients,
susceptibility to unwanted transfers, and general operational factors. ,..

The tracking between channels was very close. At no time during the flight tests did drifts occur
between the three channels. This was in agreement with the simulation runs conducted prior to flight.

The transfer transients were negligible, even when occurring during elevated-g maneuvers. In most
cases, the transfer to REBUS could not be detected in the control surface traces. Figure 7 shows a typi-
cal time response in the pitch axis, which illustrates the excellent performance for a transfer during a
3.5-g turn.

There were no unwanted transfers encountered during the flight tests. This was to be expected
because the transfer mechanism was the same as had been used to cause a transfer to computer bypass in all
the previous flfght tests with the F-8 DFBW airplane. There had never been a transfer to computer bypass
over an eight-year period of flight testing.

From an operational standpoint, no significant concerns arose. Evaluation of the handling qualities
for the REBUS control laws was included under operational assessment. Two pilots evaluated the system,
evaluating it as acceptable for emergency operations and preferable to the computer bypass mode.

EXTENSION OF CONCEPT TO OTHER APPLICATIONS

The experience gained with the F-8 REBUS flight experiment has raised some issues relative to future
applications. Many of the recommendations that could be made apply to dissimilar backup systems in
general. We will restrict the comments here to issues applicable only to resident software backups.

Much of the REBUS design was dependent on the synchronous nature of the primary system. If the pri-
mary system were asynchronous, it would be valuable for initializing the REBUS to have all surface posi-
tions available in the input data set.

Concepts similar to REBUS have already been incorporated into the designs for other flight applica-
tions. The X-wing rotorcraft program (Ref. 3) utilizes a jam-transfer software backup that is nearly the
same as REBUS. The F-16C and D aircraft with digital fly-by-wire systems will have resident software
backups in the primary system memories. . ,

CONCLUSIONS I

The F-8 resident backup software (REBUS) flight experiment has demonstrated a cost-effective approach
to providing dissimilar redundancy to protect against generic software failures. The major findings are
as follows:

1. Resident backup software that provides protection for primary software errors can be implemented.

2. Transients that occur during transfer from primary to backup can be minimized with little impact
on system complexity.

9r7

3, Independent reviewers with broad operational background in flight test can be satisfied that
resident software backups offer adequate assurance of flight safety. „ ,

Recent incorporation of backup software approaches similar to REBUS into the designs of upcoming
flight vehicles, coupled with the successful results from this flight experiment, offers evidence
that this concept will find industry-wide acceptance as a viable solution to the generic software
error problem.

REFERENCES

1. Hills, A.D.: Digital Fly-By-Wire Experience. Fault Tolerant Hardware/Software Architecture for
Flight Critical Function, AGARD-LS-143, Paper 2, Sept. 1985.

2. Szalai, Kenneth J.; Jarvis, Calvin R.; Krier, Gary E.; Megna, Vincent A.; Brock, Larry D.; and
O'Donnell, Robert N.: Digital Fly-By-Wire Flight Control Validation Experience. NASA TM-72860, 1978.

3. Guertin, R.G.: Development Status of the RSRA/X-Wing - Rotor System Research Aircraft.
AiAA-85-4008, AIAA Aircraft Design Systems and Operations Meeting, Colorado Springs, Colorado,
Oct. 14-16, 1985.

Table 1. REBUS FLIGHT SUMMARY

Number of flights in REBUS 6
Total flight time for these 6 flights 6 h 50 min
Total flight time in REBUS 3 h 54 min
Number of transfers to REBUS 22
Number of transfers to primary 18
Number of transfers at >1 g 6
Highest g level at REBUS transfer 3.5 g
Number of low approaches in REBUS 6
Number of touch and gos in REBUS 10
Number of landings in REBUS 5

ECN 3312

Figure 1. F-8 digital fly-by-wire airplane.

9-8

C^

Center
stick

Primary
digital

computers

^^

Position
sensors

Aircraft
motion
sensors

Interface
units

Secondary
actuator

Computer
bypass
system

Midvalue
select
voter

DDDh=s
Power

actuator

^
Control
surface

Servo
electronics

^~~—Bypass and servo electronics

Figure 2. F-8 DFBW simplified control system schematio.

initial
condition

Stick
direction
detector

Trim
discretes

Trim
logic

Trim
gain -* Integrator

* ̂
1 * *

I Trim initi
+ 1 conditioi

Opposition
discretes

Pitch
stick

command

Dead band
Stick

sfiaping
Stick
gain

Stick
filter OrQ

+.1

Pitch
rate gyro

signal

Rate feedback
gain

Curve and
slope

Gearing

Fixed gain
Wing position

signals
Wing position logic Gain

LImiter
Pitch

»- surface
commands

Wing
bias

Figure S. REBUS pitch-axis control law block diagram.

Primary ^
digital

computers

^^

Position
sensors

-REBUS
memory

-REBUS
trigger
device

units

Center
stick

-REBUS
switching
network

Computer
bypass
system

Aircraft
motion
sensors

Midvalue
select
voter

Secondary
actuator Power

actuator

/

^
Control
surface

Servo
electronics

 Bypass and servo electronics

Figure 4. Modified system for REBUS implementation.

r-SYNCH
\ XLINK

\ End of RM1
\ input job ^

FAIL1-X

L

r-End of CL1 actuator
\ output

\ Endof RM2-y

J L
8

End DOWNLINK
and CIP

.,^FAIL2

10 12 14 16 18 20

Time, msec

Region with larger
transient potential

Region with minimal
transient potential

Figure 5. Failure insertion placement and its
effect on transfer transient.

8 9 10

/F F F F F

'- Fault present in each
cycle, causing restart

/. Transfer
to REBUS

End of RM1
SYNCH output job-
XLINK^

-Endof CL1
actuator r-End of
output \ DOWNLINK

Endof RIVI2 7VndCIP
'"Z \

J L
- Fault

J I
0 2 4 6 8 10 12 14 16 18 20

Time, msec

Figure 6. Timing diagram for fault insertion late
in minor cycle.

9-9

Transfer
to REBUS

Elevator
position,

deg -15

-30

Flight condition:
350 KIAS, 20,000 ft

Figure 7. Flight-measured time response for ele-
vated-g transfer to REBUS.

AGARDograph No.289
Advisory Group for Aerospace Research and
Development, NATO
FAULT TOLERANT CONSIDERATIONS AND
METHODS FOR GUIDANCE AND CONTROL
SYSTEMS
Edited by M. I'Ingenieur General Marc J.Pelegrin
Published July 1987
136 pages

This AGARDograph, prepared and edited at the request
of the Guidance and Control Panel of AGARD, presents a
description of recent trends and developments in analysis
and design methods for fault tolerant guidance and control
systems architectures. The problems and issues associated
with these architectures, including both hardware and

P.T.O

AGARDograph No.289
Advisory Group for Aerospace Research and
Development, NATO
FAULT TOLERANT CONSIDERATIONS AND
METHODS FOR GUIDANCE AND CONTROL
SYSTEMS
Edited by M. I'Ingenieur General Marc J.Pelegrin
Published July 1987
136 pages

This AGARDograph, prepared and edited at the request
of the Guidance and Control Panel of AGARD, presents a
description of recent trends and developments in analysis
and design methods for fault tolerant guidance and control
systems architectures. The problems and issues associated
with these architectures, including both hardware and

P.T.O

AGARD-AG-289

High integrity software
Fault tolerance, fault

avoidance software
Software dependability
Fault diagnostic
Error recovery
Dissimilar redundancy

AGARD-AG-289

High integrity software
Fault tolerance, fault

avoidance software
Software dependability
Fault diagnostic
Error recovery
Dissimilar redundancy

AGARDograph No.289
Advisory Group for Aerospace Research and
Development, NATO
FAULT TOLERANT CONSIDERATIONS AND
METHODS FOR GUIDANCE AND CONTROL
SYSTEMS
Edited by M. I'Ingenieur General Marc J.Pelegrin
Published July 1987
136 pages

This AGARDograph, prepared and edited at the request
of the Guidance and Control Panel of AGARD, presents a
description of recent trends and developments in analysis
and design methods for fault tolerant guidance and control
systems architectures. The problems and issues associated
with these architectures, including both hardware and

P.T.O

AGARDograph No.289
Advisory Group for Aerospace Research and
Development, NATO
FAULT TOLERANT CONSIDERATIONS AND
METHODS FOR GUIDANCE AND CONTROL
SYSTEMS
Edited by M. I'Ingenieur General Marc J.Pelegrin
Published July 1987
136 pages

This AGARDograph, prepared and edited at the request
of the Guidance and Control Panel of AGARD, presents a
description of recent trends and developments in analysis
and design methods for fault tolerant guidance and control
systems architectures. The problems and issues associated
with these architectures, including both hardware and

P.T.O

AGARD-AG-289

High integrity software
Fault tolerance, fault

avoidance software
Software dependability
Fault diagnostic
Error recovery
Dissimilar redundancy

AGARD-AG-289

High integrity software
Fault tolerance, fault

avoidance software
Software dependability
Fault diagnostic
Error recovery
Dissimilar redundancy

software aspects, are addressed exploring the many developments underway in NATO in
the following areas: Advances in fault tolerant architectures; Advances in analytical fault-
detection methods; Design considerations and methods; Analysis and testing methods.

This AGARDograph has been prepared at the request of the Guidance and Control Panel
ofAGARD.

ISBN 92-835-1554-4

software aspects, are addressed exploring the many developments underway in NATO in
the following areas: Advances in fault tolerant architectures; Advances in analytical fault-
detection methods; Design considerations and methods; Analysis and testing methods.

This AGARDograph has been prepared at the request of the Guidance and Control Panel
ofAGARD.

ISBN 92-835-1554-4

software aspects, are addressed exploring the many developments underway in NATO in
the following areas: Advances in fault tolerant architectures; Advances in analytical fault-
detection methods; Design considerations and methods; Analysis and testing methods.

This AGARDograph has been prepared at the request of the Guidance and ControFPanel
ofAGARD.

software aspects, are addressed exploring the many developments underway in NATO in
the following areas: Advances in fault tolerant architectures; Advances in analytical fault-
detection methods; Design considerations and methods; Analysis and testing methods.

This AGARDograph has been prepared at the request of the Guidance and Control Panel
ofAGARD.

ISBN 92-835-1554-4 ISBN 92-835-1554-4

u
NATO ^ OTAN

7rueAncelle • 92200 NEUILLY-SUR-SEINE

FRANCE

Telephone (1)47.38,57,00 • Telex 610 176

DISTRIBUTION OF UNCLASSIFIED

AGARD PUBLICATIONS

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD
publications is made to AGARD Member Nations through the following National Distribution Centres.Further copies are sometimes
available from these Centres, but if not may be purchased in Microfiche or Photocopy form from the Purchase Agencies Usted below.

NATIONAL DISTRIBUTION CENTRES

BELGIUM
Coordonnateur AGARD — VSL
Etat-Major de la Force Aerienne
Quartier Reine Elisabeth
Rue d'Evere, 1140 Bruxelles

CANADA
Defence ^'
Dept of
Ottawa

DENMARK
Danish
Ved Idi
2100 C

FRANCE
O.N.E.
29Ave
92320

GERMANS
Fachin
Physik,
Kemfo
D-751

GREECE
Hellen
Resear
Holarg

ICELAND
Director of Aviation
c/o Flugrad
Reyjavik

IMASA
National Aeronautics and
Space Administration

ITALY
Aeronautica Militare
Ufficio del Delegato Nazionale aU'AGARD
3 Piazzale Adenauer
00144 Roma/EUR

LUXEMBOURG
See Belgium

Postage and Fees Paid
National Aeronautics and
Space Administration
NASA-451

Washington, D.C.
20546

SPECIAL FOURTH CLASS MAIL
BOOK

Official Business
Penalty for Private Use $300

L2 001 AG-289 8711 1 7S00277<^P
NAVAL POSTGRADUATE SCHOOL
DUDLEY KNOX LIBRARY/CODF 0^47
MONTEREY CA 93943

ishment

AGARD

VJIM InLI Pv.llNVJL-'V^iVl

Defence Research Information Centre
Kentigern House
65 Brown Street
Glasgow G2 8EX

UNITED STATES
National Aeronautics and Space Administration (NASA)
Langley Research Center
M/S 180
Hampton, Virginia 23665

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD
STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE

DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

PURCHASE AGENCIES

National Technical
Information Service (NTIS)
5285 Port Royal Road
Springfield
Virginia 22161, USA

ESA/Information Retrieval Service
European Space Agency
10, rue Mario Nikis
75015 Paris, France

The British Library
Document Supply Division
Boston Spa, Wetherby
West Yorkshire LS23 7BQ
England

Requests for microfiche or photocopies of AGARD documents should include the AGARD serial number, title, author or editor, and
publication date. Requests to NTIS should include the NASA accession report number. Full bibliographical references and abstracts of

AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR)
published by NASA Scientific and Technical
Information Branch
NASA Headquarters (NIT-40)
Washington D.C, 20546, USA

Government Reports Announcements (GRA)
published by the National Technical
Information Services, Springfield
Virginia 22161, USA

Printed by Specialised Printing Services Limited

40 Chigwell Lane, Loughton, Essex 1GI03TZ

ISBN 92-835-1554-4

